PPt4Web Хостинг презентаций

Главная / Физика / 14 2-е начало термодинамики
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: 14 2-е начало термодинамики


Скачать эту презентацию

Презентация на тему: 14 2-е начало термодинамики


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2
Описание слайда:

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5
Описание слайда:

№ слайда 6
Описание слайда:

№ слайда 7
Описание слайда:

№ слайда 8 Отто : V=const Отто : V=const Дизеля : p=const. Воспламенение при впрыскивании в
Описание слайда:

Отто : V=const Отто : V=const Дизеля : p=const. Воспламенение при впрыскивании в горячий воздух нагретый до высокой температуры за счет сжатия. КПД 31-55% а у карбюраторных 25-30% Тринкеля - промежуточный

№ слайда 9 Посмотрим фильм про магнитный холодильник!
Описание слайда:

Посмотрим фильм про магнитный холодильник!

№ слайда 10  Тепловой насос извлекает накопленную энергию из различных источников - гру
Описание слайда:

 Тепловой насос извлекает накопленную энергию из различных источников - грунта, рек, озер, морей, стоков, вентиляционных выбросов и дымовых газов; земных недр и переносит ее в дом. По прогнозу Мирового Энергетического Комитета (МИРЭК), к 2020 году в передовых странах доля отопления и горячего водоснабжения от тепловых насосов составит не менее 75%. Изобрел еще  Тепловой насос извлекает накопленную энергию из различных источников - грунта, рек, озер, морей, стоков, вентиляционных выбросов и дымовых газов; земных недр и переносит ее в дом. По прогнозу Мирового Энергетического Комитета (МИРЭК), к 2020 году в передовых странах доля отопления и горячего водоснабжения от тепловых насосов составит не менее 75%. Изобрел еще   

№ слайда 11 Современные тепловые насосы работают полностью аналогично холодильникам у Вас в
Описание слайда:

Современные тепловые насосы работают полностью аналогично холодильникам у Вас в квартире. Только если холодильник откачивает тепло из холодильной камеры наружу (оно рассеивается на задней панели) то тепловой насос перекачивает его с улицы во внутрь дома. Современные тепловые насосы работают полностью аналогично холодильникам у Вас в квартире. Только если холодильник откачивает тепло из холодильной камеры наружу (оно рассеивается на задней панели) то тепловой насос перекачивает его с улицы во внутрь дома. Крайне эффективен так как сам энергию не производит а только перемещает имеющееся тепло (уже запасенное до этого, например, от Солнца) с одного места на другое (с улице в дом). Хороший потенциал для применения тепловых насосов представляют собой обогреваемый пол. Коэффициент преобразования энергии тем выше, чем меньше разница температур между охлаждаемым и нагреваемым объектом. Огромный потенциал! За счет тепла воды мирового океана можно снабжать электроэнергией весь мир более тысячи лет понизив температуру менее чем на 0.1 С. Только одна маленькая заминка -второе начало термодинамики!

№ слайда 12
Описание слайда:

№ слайда 13 2-е начало не противоречит 1-му началу термодинамики, дополняет его. Вечным двиг
Описание слайда:

2-е начало не противоречит 1-му началу термодинамики, дополняет его. Вечным двигателем 1-го рода мы назвали двигатель с КПД более 100% (т.е работа совершается в большем количестве чем полученная извне энергия). Воображаемый двигатель, который всю извлекаемую из окружающей среды (океан, воздух и т.д.) теплоту Q превращает в A назовем вечным двигателем 2-го рода. Вечный двигатель 2-го рода не возможен. Т.е. превратить все подводимое тепло только в полезную работу невозможно. Часть тепла потеряется и перейдет к холодильнику (например, во внешнюю среду). При анализе идеального варианта тепловой машины 2-е начало было учтено. Первым сформулировал Клаузиус в 1850 г.- невозможен процесс при котором теплота переходила самопроизвольно от холодных тел к нагретым тела (в широком смысле единственным следствием которого является переход теплоты от холодильника к нагревателю). 2-е начало не противоречит 1-му началу термодинамики, дополняет его. Вечным двигателем 1-го рода мы назвали двигатель с КПД более 100% (т.е работа совершается в большем количестве чем полученная извне энергия). Воображаемый двигатель, который всю извлекаемую из окружающей среды (океан, воздух и т.д.) теплоту Q превращает в A назовем вечным двигателем 2-го рода. Вечный двигатель 2-го рода не возможен. Т.е. превратить все подводимое тепло только в полезную работу невозможно. Часть тепла потеряется и перейдет к холодильнику (например, во внешнюю среду). При анализе идеального варианта тепловой машины 2-е начало было учтено. Первым сформулировал Клаузиус в 1850 г.- невозможен процесс при котором теплота переходила самопроизвольно от холодных тел к нагретым тела (в широком смысле единственным следствием которого является переход теплоты от холодильника к нагревателю).

№ слайда 14 Демон Максвелла за работой. Иллюстрация пользователя Волобуев с сайта wikipedia.
Описание слайда:

Демон Максвелла за работой. Иллюстрация пользователя Волобуев с сайта wikipedia.org Японские физики собрали искусственного демона Максвелла Японским физикам впервые удалось превратить информацию в энергию. Статья ученых опубликована в журнале Nature Physics, а ее краткое изложение приводит Nature News. В рамках работы ученые поместили бусинку из полистирола продолговатой формы в специальный раствор, который сами организаторы эксперимента называют буферным. Размер бусины составлял около 300 нанометров. Во время эксперимента бусина помещалась в емкость с раствором, на дне которой располагались электроды, на которые подавался переменный ток. Электромагнитное поле индуцировало на бусинке, выполненной из диэлектрика, поляризацию таким образом, что в поле ей было более энергетически выгодно вращаться по часовой стрелке, чем против нее. Вместе с тем из-за небольших размеров на вращение бусинки оказывало заметное (и случайное) влияние броуновское движение молекул раствора. Состояние бусинки мониторилось при помощи микроскопа и камеры для высокоскоростной съемки. В зависимости от поведения бусинки фаза одного из электродов менялась. В результате бусинка набирала механическую энергию. Подсчеты исследователей показали, что этой энергии было больше, чем работа, совершаемая электромагнитным полем. Основой для эксперимента стали теоретические выкладки Лео Сциларда, опубликованные им в работе 1929 года. Ученые подчеркивают, что закон сохранения энергии в данном случае не нарушается, поскольку для работы ЭВМ и камер требуется электрическая энергия. Вместе с тем непосредственно передачи энергии бусинке, потраченной на работу того же ЭВМ, не происходит - в рамках эксперимента происходит превращение информации в энергию и наоборот. Физики отмечают, что на создание данного эксперимента их вдохновил знаменитый демон Максвелла. В 1867 году Джеймс Максвелл предложил мысленный эксперимент, якобы опровергающий второе начало термодинамики. В рамках эксперимента имелось две емкости с газом, разделенные дверью и демон, который был способен открывать и закрывать эту самую дверь. Предполагалось, что демону известны скорости молекул - перед быстрыми он открывал дверь, а перед медленными, наоборот, закрывал. В результате одна из емкостей нагревалась, а вторая остывала. В это же время Второе начало термодинамики утверждает, что самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому, невозможен. Ссылки по теме

№ слайда 15
Описание слайда:

№ слайда 16
Описание слайда:

№ слайда 17 Частные производные –уравнения состояния Частные производные –уравнения состояни
Описание слайда:

Частные производные –уравнения состояния Частные производные –уравнения состояния Изолированными (или замкнутыми) системами называются термодинамические системы, которые не обмениваются с внешней средой ни энергией, ни веществом Еще одна формулировка: Энтропия изолированной системы не может убывать: dS ≥ 0 То , что dS=0 при δQ=0 => из определения S Процесс S=const - изоэнтропийный процесс например адиабатическое размагничивание. Т.е. если S1=S2 то система адиабатически изолирована Энтропия это мера необратимости

№ слайда 18 При адиабатических условиях возможны только обратимые процессы (S=const) и не об
Описание слайда:

При адиабатических условиях возможны только обратимые процессы (S=const) и не обратимые при которых S возрастает но в природе все необратимо При адиабатических условиях возможны только обратимые процессы (S=const) и не обратимые при которых S возрастает но в природе все необратимо Для открытых систем S может и уменьшаться. Не обязательно чтобы увеличивалась S каждого из тел участвующих в процессе. Увеличивается ∑Si в которых процесс вызвал изменения S=Sm+Sl+Se=const то -ΔSm=ΔSl+ΔSe Термодинамическое равновесие – состояние с Smax . Если S= Smax то никакие дальнейшие процессы не возможны ибо любой процесс ведет к уменьшению S. S(T) может иметь и несколько Smax несколько состояний равновесия (метастабильных состояний). Наиболее стабильно то где самая большая Smax .Т.е. самое большое время жизни состояния . А может вообще не быть стабильных состояний.

№ слайда 19
Описание слайда:

№ слайда 20
Описание слайда:

№ слайда 21
Описание слайда:

№ слайда 22
Описание слайда:

№ слайда 23
Описание слайда:

№ слайда 24
Описание слайда:

№ слайда 25
Описание слайда:

№ слайда 26
Описание слайда:

№ слайда 27
Описание слайда:

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru