Учитель математики Наталья Игоревна Касьянова МОУ гимназия №5 г. Морозовск Ростовской обл. 900igr.net
УСТНО Что значит разложить многочлен на множители? Какие способы разложения многочлена на множители вы знаете? Сформулируйте алгоритм разложения многочлена на множители способом вынесения общего множителя за скобки.
УСТНО Вынести за скобки общий множитель: 1) 6а+9х; 2) ay–ax; 3) a2 –a³b; 4) 16mn – 4mn3 ; 5) 12(a+b) –x(a+b).
«Вынесение общего множителя за скобки»
Вынеси общий множитель за скобки: 15х + 10y; a2 – ab; n(7-m) + k(7–m); 8m2n – 4mn3 ; a(b-c)+3(c-b). 9n + 6m; b² - ab; b(a+5) – c(a+5); 20x³y² + 4x²y³; 6(m-n)+s(n-m).
ПРОВЕРКА 5(3х +2у); a(a-b); (7-m)(n+k); 4mn(2m-n²); (b-c)(a+3). 3(3n + 2m); b(b – a); (a+5)(b-c); 4xy(5x + y); (6–s)(m-n). 5 – «5»; 4 – «4»; 3 – «3».
РЕШИТЕ УРАВНЕНИЕ 1) x (x-11) = 0; 2) 6x² – 2x = 0; 3) x2 + 3x + 6 + 2x = 0. - Есть ли общий множитель у всех слагаемых? - Значит способ разложения на множители не подходит.
x2 + 3x + 6 + 2x = 0. РЕШЕНИЕ: Пристально посмотрим на левую часть уравнения…Что-нибудь вы видите? Попробуем объединить в группы: (x2 + 3x) + (6 + 2x) = 0; Теперь у одночленов в скобках появились общие множители х(x + 3) + 2(3 + x) = 0; (х + 3)(х +2) = 0;
Способ группировки Данный способ применяют к многочленам, которые не имеют общего множителя для всех членов многочлена. Чтобы разложить многочлен на множители способом группировки, нужно: Объединить члены многочлена в такие группы, которые имеют общий множитель в виде многочлена. Вынести этот общий множитель за скобки.
ПРИМЕР Разложить на множители многочлен: xy-6+3х-2y Первый способ группировки: xy-6+3х-2y=(xy-6)+(3x-2y).(Группировка неудачна.) Второй способ группировки: xy-6+3х-2y=(xy+3x)+(-6-2y)= =x(y+3)-2(y+3)=(y+3)(x-2). Третий способ группировки: xy-6+3х-2y=(xy-2y)+(-6+3x)= =y(x-2)+3(x-2)=(x-2)(y+3). Ответ: xy-6+3х-2y=(x-2)(y+3). Как видите, не всегда с первого раза группировка оказывается удачной. Если группировка оказалась неудачной, откажитесь от нее и ищите иной способ.
РАЗЛОЖИТЕ НА МНОЖИТЕЛИ: ах + 3х + 4а + 12; аb - 8а – bх + 8х; x2m - x2n + y2m - y2n.
Дифференцированные задания по уровням А. Задания нормативного уровня. 1) 7а - 7в + аn – bn 2) xy + 2y + 2x + 4 3) y2a - y2b + x2a - x2b Б. Задания компетентного уровня 1) xy + 2y - 2x – 4 2) 2сх – су – 6х + 3у 3) х2 + xy + xy2 + y3 С. Задания творческого уровня 1) x4 + x3y - xy3 - y4 2) ху2 – ву2 – ах + ав + у2 – а 3) х2 – 5х + 6
ДОМАШНЕЕ ЗАДАНИЕ § 32 (алгоритм знать); № 32.3(а); № 32.4 (а).
ИТОГ УРОКА а) С каким новым способом разложения многочлена на множители вы познакомились сегодня? б) В чем он заключается? в) К каким многочленам обычно применяют способ группировки?
БЛАГОДАРЮ ЗА УРОК!