PPt4Web Хостинг презентаций

Главная / Алгебра / Логарифмические уравнения
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Логарифмические уравнения


Скачать эту презентацию

Презентация на тему: Логарифмические уравнения


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2 В современной школе основной формой обучения математике ,главным связующем звено
Описание слайда:

В современной школе основной формой обучения математике ,главным связующем звеном в интеграции различных организационных форм обучения по-прежнему остается урок. В процессе обучения математический материал осознается и усваивается преимущественно в процессе решения задач, потому на уроках математики теория не изучается в отрыве от практики. Для того чтобы успешно решать логарифмические уравнения , на которые в учебном плане отведено всего 3 часа, необходимо уверенное владение формулами для логарифмов и свойствами логарифмической функции. Тема « Логарифмические уравнения» в учебном плане идет за логарифмическими функциями и свойствами логарифмов. Ситуация несколько осложняется по сравнению с показательными уравнениями наличием ограничений на область определения логарифмических функций . Использования формул логарифма произведения, частного и других без дополнительных оговорок может привести как к приобретению посторонних корней, так и к потери корней . Поэтому необходимо внимательно следить за равносильностью совершаемых преобразований.

№ слайда 3 Тема: « Логарифмические уравнения.» Тема: « Логарифмические уравнения.»
Описание слайда:

Тема: « Логарифмические уравнения.» Тема: « Логарифмические уравнения.»

№ слайда 4 Ход урока. Ход урока. 1Организационный момент: 2.Актуализация опорных знаний; Уп
Описание слайда:

Ход урока. Ход урока. 1Организационный момент: 2.Актуализация опорных знаний; Упростите:

№ слайда 5 Определение: Уравнение, содержащее переменную под знаком логарифма, называется л
Описание слайда:

Определение: Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение loga х = б (а > 0, а≠ 1, б>0 ) Способы решения Решение уравнений на основании определения логарифма, например, уравнение loga х = б (а > 0, а≠ 1, б>0 ) имеет решение х = аb. Метод потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их: если , loga f(х) = loga g(х), то f(х) = g(х), f(х)>0, g(х)>0 , а > 0, а≠ 1. Метод введение новой переменной. Метод логарифмирования обеих частей уравнения. Метод приведения логарифмов к одному и тому же основанию. Функционально – графический метод.

№ слайда 6 На основе определения логарифма решаются уравнения, в которых по данным основани
Описание слайда:

На основе определения логарифма решаются уравнения, в которых по данным основаниям и числу определяется логарифм, по данному логарифму и основанию определяется число и по данному числу и логарифму определяется основание. Log2 4√2= х, log3√3 х = - 2 , logх 64= 3, 2х= 4√2, х =3√3 – 2 , х3 =64, 2х = 25/2 , х =3- 3 , х3 = 43 , х =5/2 . х = 1/27. х =4.

№ слайда 7 Решите уравнения: Решите уравнения: lg(х2-6х+9) - 2lg(х - 7) = lg9. Условие для
Описание слайда:

Решите уравнения: Решите уравнения: lg(х2-6х+9) - 2lg(х - 7) = lg9. Условие для проверки всегда составляем по исходному уравнению. (х2-6х+9) >0, х≠ 3, Х-7 >0; х >7; х >7. С начало нужно преобразовать уравнение привести к виду log ((х-3)/(х-7))2 = lg9 применяя формулу логарифм частного. ((х-3)/(х-7))2 = 9, (х-3)/(х-7) = 3, (х-3)/(х-7)= - 3 , х- 3 = 3х -21 , х -3 =- 3х +21, х =9. х=6. посторонний корень. Проверка показывает 9 корень уравнения. Ответ : 9

№ слайда 8 Решите уравнения: log62 х + log6 х +14 = (√16 – х2)2 +х2, 16 – х2 ≥0 ; - 4≤ х ≤
Описание слайда:

Решите уравнения: log62 х + log6 х +14 = (√16 – х2)2 +х2, 16 – х2 ≥0 ; - 4≤ х ≤ 4; х >0 , х >0, О.Д.З. [ 0,4). log62 х + log6 х +14 = 16 – х2 +х2, log62 х + log6 х -2 = 0 заменим log6 х = t t 2 + t -2 =0 ; Д = 9 ; t1 =1 , t2 = -2. log6 х = 1 , х = 6 посторонний корень . log6 х = -2, х = 1/36 , проверка показывает 1/36 является корнем . Ответ : 1/36.

№ слайда 9 Решите уравнения Решите уравнения = ЗХ , возьмем от обеих частей уравнения логар
Описание слайда:

Решите уравнения Решите уравнения = ЗХ , возьмем от обеих частей уравнения логарифм по основанию 3 Вопрос : 1.Это – равносильное преобразования ? 2.Если да то почему ? Получим log3 = log3 (3х) . Учитывая теорему 3 , получаем : log3 х2 log3 х = log3 3х, 2log3 х log3 х = log3 3+ log3 х, 2 log32 х = log3 х +1, 2 log32 х - log3 х -1=0, заменим log3 х = t , х >0 2 t 2 + t -2 =0 ; Д = 9 ; t1 =1 , t2 = -1/2 log3 х = 1 , х=3, log3 х = -1/ 2 , х= 1/√3. Ответ: {3 ; 1/√3. }.

№ слайда 10 Решить уравнения: log9( 37-12х ) log7-2х 3 = 1, Решить уравнения: log9( 37-12х )
Описание слайда:

Решить уравнения: log9( 37-12х ) log7-2х 3 = 1, Решить уравнения: log9( 37-12х ) log7-2х 3 = 1, 37-12х >0, х< 37/12, 7-2х >0, х< 7/2, х< 7/2, 7-2х≠ 1; х≠ 3; х≠ 3; log9( 37-12х ) / log3 (7-2х ) = 1, ½ log3( 37-12х ) = log3 (7-2х ) , log3( 37-12х ) = log3 (7-2х )2 , 37-12х= 49 -28х +4х2 , 4х2-16х +12 =0, х2-4х +3 =0, Д=19, х1=1, х2=3, 3 –посторонний корень . Проверкой убеждаемся , что х=1 корень уравнения.

№ слайда 11 Решите уравнения: log3 х = 12-х. Решите уравнения: log3 х = 12-х. Так как функци
Описание слайда:

Решите уравнения: log3 х = 12-х. Решите уравнения: log3 х = 12-х. Так как функция у= log3 х возрастающая , а функция у =12-х убывающая на (0; + ∞ ) то заданное уравнение на этом интервале имеет один корень. Который легко можно найти. При х=10 заданное уравнение обращается в верное числовое равенство 1=1. Ответ х=10.

№ слайда 12
Описание слайда:

№ слайда 13 2 урок. 2 урок. Тема урока: «Применение различных методов при решение логарифмич
Описание слайда:

2 урок. 2 урок. Тема урока: «Применение различных методов при решение логарифмических уравнений.» Тип урока: Урок закрепления изученного  Ход урока. 1.Организационный момент: 2.«Проверь себя» 1)log-3 ((х-1)/5)=? 2) log5 (121 – x2),   (121 – x2) ≥ 0, x < – 11, x ≥ 11. 3) 32х =5, log5 3=2х , х = (log5 3)/2. 2log3 5 4log3 5 4) 9 =3 = 45 5) lg x2 = 2lg x.

№ слайда 14 Каким способом можно решить данное уравнение ? (метод введение новой переменной
Описание слайда:

Каким способом можно решить данное уравнение ? (метод введение новой переменной ) Каким способом можно решить данное уравнение ? (метод введение новой переменной ) log3 2х +3 log3х +9 = 37/ log3 (х/27); х>0 Обозначим log3х = t ; t 2 -3 t +9 =37/(t-3) ; t ≠ 3, (t-3) ( t 2 -3 t +9) = 37, t3-27 = 37; t3= 64 ; t=4. log3х = 4 ; х= 81. Проверкой убеждаемся , что х=81 корень уравнения.

№ слайда 15 log3 х log3 х Х = 81 , возьмем от обеих частей уравнения логарифм по основанию 3
Описание слайда:

log3 х log3 х Х = 81 , возьмем от обеих частей уравнения логарифм по основанию 3; log3 х log3 Х = log3 81; log3х log3х = log381; log3 2х =4; log3х =2, х=9 ; log3 х = -2, х=1/9. Проверкой убеждаемся , что х=9 и х=1/9 корни уравнения.

№ слайда 16 1 Областью определения логарифмической функции у= log3 Х является множество поло
Описание слайда:

1 Областью определения логарифмической функции у= log3 Х является множество положительных чисел . 1 Областью определения логарифмической функции у= log3 Х является множество положительных чисел . 2Функция у= log3 Х монотонно возрастает . 3.Область значений логарифмической функции от 0 до бесконечности. 4 logас/в = logа с - logа в. 5 Верно ,что log8 8-3 =1.

№ слайда 17 1-√х =In х Так как функция у= In х возрастающая , а функция у =1-√х убывающая на
Описание слайда:

1-√х =In х Так как функция у= In х возрастающая , а функция у =1-√х убывающая на (0; + ∞ ) то заданное уравнение на этом интервале имеет один корень. Который легко можно найти. При х=1 заданное уравнение обращается в верное числовое равенство 1=1. Ответ : х=1.

№ слайда 18 log3 (х+2у) -2log3 4 =1- log3 (х – 2у), log3 (х 2 - 4у 2) = log3 48, log1/4 (х -
Описание слайда:

log3 (х+2у) -2log3 4 =1- log3 (х – 2у), log3 (х 2 - 4у 2) = log3 48, log1/4 (х -2у) = -1; log1/4 (х -2у) = -1; х 2 - 4у 2 – 48 =0, х =4 +2у, х =8, х -2у = 4; 16у = 32; у =2. Проверкой убеждаемся, что найденное значения является решениями системы.    

№ слайда 19 1/4 > 1/8, бесспорно правильно. (1/2)2 > (1/2)3, тоже не внушающее сомнени
Описание слайда:

1/4 > 1/8, бесспорно правильно. (1/2)2 > (1/2)3, тоже не внушающее сомнение. Большему числу соответствует больший логарифм, значит, lg(1/2)2 > lg(1/2)3; 2lg(1/2) > 3lg(1/2). После сокращения на lg(1/2) имеем 2 > 3. - Где ошибка?

№ слайда 20 1Найдите областью определения: у = log0,3 (6х –х2 ). 1Найдите областью определен
Описание слайда:

1Найдите областью определения: у = log0,3 (6х –х2 ). 1Найдите областью определения: у = log0,3 (6х –х2 ). 1(-∞ ;0) Ư(6 ; + ∞ ); 2. (-∞ ; -6) Ư(0 ; + ∞ ); 3.(-6; 0 ). 4.(0; 6 ). 2.Найдите область значений : у =2,5 + log1,7 х. 1(2,5 ; + ∞ ); 2. (-∞ ; 2,5); 3 (- ∞ ; + ∞ ); 4. (0 ; + ∞ ). 3.Сравните : log0,5 7 и log0,5 5. 1.>. 2.<. 3.=. 4. Решите уравнение : 7 *5 log5 X = х +21. 1.( 3,5 ). 2. нет решения. 3.( – 3,5) . 4.( 7). 5. Найти значение выражения : log4 (64с) если log4 с = -3,5. 1. ( -6,5 ) . 2. (- 0, 5 ) 3. (- 10, 5 ) 4.( -67,5).

№ слайда 21 Итог урока: Чтобы хорошо решать Итог урока: Чтобы хорошо решать логарифмические
Описание слайда:

Итог урока: Чтобы хорошо решать Итог урока: Чтобы хорошо решать логарифмические уравнения , нужно совершенствовать навыки решения практических заданий ,так как они являются основным содержанием экзамена и жизни. Домашние задания : № 1563(а,б), №1464(б,в) , № 1567 (б).

№ слайда 22 №1 Какие из чисел -1; 0; 1; 2; 4; 8 являются корнями уравнения log2 х=х-2? №1 Ка
Описание слайда:

№1 Какие из чисел -1; 0; 1; 2; 4; 8 являются корнями уравнения log2 х=х-2? №1 Какие из чисел -1; 0; 1; 2; 4; 8 являются корнями уравнения log2 х=х-2? №2 Решить уравнения: а) log16х= 2; в) log2 (2х- х2 ) -=0; г) log3 (х-1)=log3 (2х+1) №3 Решить неравенства: а) log3 х> log3 5; б) log0,4 х< 1; в) log2 (х-4) >0 . №4 Найдите область определения функции: у = log2 (х+4) №5 Сравните числа: log3 6/5 и log3 5/6; log0,2 5 и . Log0,2 17. №6 Определить число корней уравнения: log3 Х= =-2х+4.  

№ слайда 23 Log5 2 (х-3)2 +3 log5 (5 (3 -х )) -10 =0, Log5 2 (х-3)2 +3 log5 (5 (3 -х )) -10
Описание слайда:

Log5 2 (х-3)2 +3 log5 (5 (3 -х )) -10 =0, Log5 2 (х-3)2 +3 log5 (5 (3 -х )) -10 =0, (2 log5 (х-3))2 +3 log2 (3 -х ) +3 -10 = 0, 4 log5 2 (3-х)2 +3 log2 (3 -х ) -7= 0, Пусть log5(3-х) = t; 4 t 2 -3 t -7 =0, t =-7/4 ; t=1 . log5(3-х) = -7/4, и log5(3-х) = 1, 3-х =5-7/4 , 3-х =5, х =3 -1/57/4. х = - 2. Ответ: { 3 -1/57/4 ; -2}.

№ слайда 24 2+ 30/(2х-11)= (4х-22+30)/(2х-11)=(4х+8)/(2х-11)=4(х+2)/(2х-11) 2+ 30/(2х-11)= (
Описание слайда:

2+ 30/(2х-11)= (4х-22+30)/(2х-11)=(4х+8)/(2х-11)=4(х+2)/(2х-11) 2+ 30/(2х-11)= (4х-22+30)/(2х-11)=(4х+8)/(2х-11)=4(х+2)/(2х-11) 2 – 15/(х+2)=(2х+4-15)/(2+х)=(2х-11)/(х+2)=((х+2)/(2х-11))-1, 3 log4 (4(х+2)/(2х-11)) = 2log4 ( (х+2)/(2х-11))-1+8 , 3+3 log4 ((х+2)/(2х-11)) = - 2log4 ( (х+2)/(2х-11))+8 , Пусть log4 ((х+2)/(2х-11)) = t, 3+3t = -2 t +8, t = 1. log4 ((х+2)/(2х-11)) =1, (х+2)/(2х-11) =4, х+2=8х-44, х=46/7. Проверкой убеждаемся , что х=46/7 корень уравнения.

№ слайда 25 1. 3 log38 = 8. 1. 3 log38 = 8. 2. lg х= - 2 , решением данного уравнения являет
Описание слайда:

1. 3 log38 = 8. 1. 3 log38 = 8. 2. lg х= - 2 , решением данного уравнения является 100. 3 Функция у= log4/3 Х монотонно возрастает . 4. logа (х+у) = logа х + logа у. 5. logа (х+у) == logа х - logа у. 6. logа (ху) = logа х + logа у.

№ слайда 26 Воспользуемся формулой преобразования суммы логарифмов логарифм произведения. По
Описание слайда:

Воспользуемся формулой преобразования суммы логарифмов логарифм произведения. Получим уравнения log3 (х – 1) (х -3 ) = 1, отсюда следует Воспользуемся формулой преобразования суммы логарифмов логарифм произведения. Получим уравнения log3 (х – 1) (х -3 ) = 1, отсюда следует х2 – 4х + 3 =3. Корнями последнего уравнения являются х1 =0 и х2 = 4, Ответ : {0 , 4}. Решите уравнения: log3 (х – 1) + log3 (х -3 ) = 1.

№ слайда 27 Решите уравнения log2 (х +1) - log2 (х -2 ) = 2. Решите уравнения log2 (х +1) -
Описание слайда:

Решите уравнения log2 (х +1) - log2 (х -2 ) = 2. Решите уравнения log2 (х +1) - log2 (х -2 ) = 2. Воспользуемся формулой преобразования разности логарифмов логарифм частного, получаем log2 (х +1) /(х- 2) = 2, откуда следует (х +1) /(х- 2) = 2. Решив последнее уравнения ,находим х = 5. Ответ: х = 5.

№ слайда 28 Решить уравнен
Описание слайда:

Решить уравнен

№ слайда 29 Ответ : 1вариант (3;2;4.) 2.вариант – (2;4;3.) 3.вариант – (4;3;2.)  Итог у
Описание слайда:

Ответ : 1вариант (3;2;4.) 2.вариант – (2;4;3.) 3.вариант – (4;3;2.)  Итог урока: Пренебрегать теорией нельзя ,в этом мы с вами убедились на уроке : Без знания теоретического материала невозможно уверенно решать практические задания. Определенная часть вопросов направлена на проверку именно теоретических знаний , используемых правил , определений и теорем. Домашние задания : №1568 (а.б) ,№ 1562 (а,б) №1573 (г).      

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru