Задачи: Задачи: Образовательные: - изучить определение линейной функции, - ввести и изучить алгоритм построения графика линейной функции, - отработать навык распознавания линейной функции по заданной формуле, графику, словесному описанию. Развивающие: - развивать зрительную память, математически грамотную речь, аккуратность, точность в построении, умение анализировать. Воспитательные: - воспитывать ответственное отношение к учебному труду, аккуратность, дисциплинированность, усидчивость. - формировать навыки самоконтроля и взаимоконтроля
I. Организационный момент I. Организационный момент II. Актуализация опорных знаний III. Изучение новой темы IV. Закрепление: устные упражнения, задачи на построение графиков V. Решение занимательных заданий VI. Подведение итога урока, запись домашнего задания VII. Рефлексия
Разгадав слова по горизонтали, вы узнаете ключевое слово Разгадав слова по горизонтали, вы узнаете ключевое слово 1. Точный набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное время 2. Одна из координат точки 3. Зависимость одной переменной от другой, при которой каждому значению аргумента соответствует единственное значение зависимой переменной 4. Французский математик, который ввел прямоугольную систему координат 5. Угол, градусная мера которого больше 900, но меньше 1800 6. Независимая переменная 7. Множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции 8. Дорога, которую мы выбираем
1. Точный набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное время 1. Точный набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное время 2. Одна из координат точки 3. Зависимость одной переменной от другой, при которой каждому значению аргумента соответствует единственное значение зависимой переменной 4. Французский математик, который ввел прямоугольную систему координат 5. Угол, градусная мера которого больше 900, но меньше 1800 6. Независимая переменная 7. Множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции 8. Дорога, которую мы выбираем
Математической моделью ситуации является выражение y = 15 + 4x, где x – время ходьбы в часах, y – расстояние от А ( в километрах ). С помощью этой модели отвечаем на вопрос задачи: Математической моделью ситуации является выражение y = 15 + 4x, где x – время ходьбы в часах, y – расстояние от А ( в километрах ). С помощью этой модели отвечаем на вопрос задачи: если x = 2, то y =15 + 4 ∙ 2 = 23 если x = 4, то y = 15 + 4 ∙ 4= 31 если x = 6, то y = 15 + 4 ∙ 6 = 39 Математическая модель y = 15 + 4x является линейной функцией.
Чтобы построить график линейной функции надо , указав конкретное значение x, вычислить соответствующее значение y. Чтобы построить график линейной функции надо , указав конкретное значение x, вычислить соответствующее значение y. Обычно эти результаты оформляют в виде таблицы. Говорят, что x – независимая переменная (или аргумент), y – зависимая переменная.
Алгоритм построения графика линейной функции Алгоритм построения графика линейной функции 1) Составить таблицу для линейной функции (каждому значению независимой переменной поставить в соответствие значение зависимой переменной) 2) Построить на координатной плоскости xOy точки 3) Провести через них прямую – график линейной функции
Вернёмся к задаче Вернёмся к задаче
1) Составим таблицу для линейной функции 1) Составим таблицу для линейной функции y = -2x + 1 2) Построим на координатной плоскости xOy точки (-3;7) и (2;-3) и проведём через них прямую линию. Это график уравнения y = -2x + 1. Далее, выделим отрезок, соединяющий построенные точки.
Выберите, какая функция является линейной функцией Выберите, какая функция является линейной функцией
Линейная функция задана формулой Линейная функция задана формулой y = -3x – 5. Найдите её значение при x = 23, x = -5, x = 0
Если x = 23, то y = -3 23 – 5=-69 – 5 = -74 Если x = 23, то y = -3 23 – 5=-69 – 5 = -74 Если x = -5, то y = -3 (-5) – 5= 15– 5 = 10 Если x = 0, то y = -3 0– 5= 0 – 5= -5
Проверка решения Проверка решения
Подумай Подумай
построение графика.oms построение графика.oms
«Как аукнется, так и откликнется» «Как аукнется, так и откликнется»
« Светит, да не греет» « Светит, да не греет»
1) Какая функция называется линейной ? 1) Какая функция называется линейной ? 2) Что является графиком линейной функции? 3) Сформулировать алгоритм построения графика линейной функции
Домашнее задание: Домашнее задание: «3» - п.8, №8.6, 8.14 (а, б),8.19(а, б) «4», «5» - п.8, №8.51(а, б), 8.52(а, б),8.22 (а)
- Я работал(а) отлично, в полную силу своих возможностей, чувствовал(а) себя уверенно. - Я работал(а) отлично, в полную силу своих возможностей, чувствовал(а) себя уверенно. - Я работал(а) хорошо, но не в полную силу, испытывал(а) чувство неуверенности, боязни, что отвечу неправильно.
«Алгебра (в 2-х частях). Ч. 1: Учебник. 7 класс» «Алгебра (в 2-х частях). Ч. 1: Учебник. 7 класс» А.Г. Мордкович. – М.: Мнемозина, 2010 г. «Алгебра (в 2-х частях). Ч. 2: Задачник. 7 класс» А.Г. Мордкович, Л.А. Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. – М.: Мнемозина, 2010 г. «Математика, 5-11 классы. Уроки учительского мастерства» Е.В. Алтухова, Т.Н. Видеман и др. – В.: Учитель, 2009 г. http://fcior.edu.ru/