Вероятность события 9 класс
Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например, такие слова: Встречаясь в жизни с различными событиями, мы часто даем оценку степени их достоверности. При этом произносим. Например, такие слова: «Это невероятно» - говорим мы о том, что вода в холодильнике закипела «Маловероятно, что сегодня будет идти дождь» - говорим, глядя на безоблачное небо летним утром
Вопрос о возможности измерения степени достоверности наступления какого-либо события задавали себе многие ученые Основателями теории вероятности были французские математики XVII века Б. Паскаль и П. Ферма, и голландский ученый Х. Гюйгенс
Наблюдая за игрой в кости, Наблюдая за игрой в кости, Б. Паскаль высказал идею измерения степени уверенности в выигрыше некоторым числом. Б. Паскаль рассуждал, что , когда игрок бросает игральную кость, он не знает, какое число очков выпадет. Но он знает, что каждое из чисел - 1, 2, 3, 4, 5, 6 имеет одинаковую долю успеха в своем появлении. Появление же одного из этих чисел в каждом испытании – событие достоверное
Вероятность события Если принять возможность наступления достоверного события за 1, то возможность появления, например, шестерки в шесть раз меньше, т. е. равна 1/6
Вероятность события Если буквой А обозначить событие – «выпало 6 очков» при одном бросании игральной кости, то вероятность события А обозначают Р(А) и записывают Р(А) = 1/6
Задача Поверхность рулетки разделена диаметрами на 4 части. Найти вероятность того, что раскрученная стрелка рулетки остановится в секторе 3
Вероятность события Помимо рассмотренных элементарных событий можно рассматривать и более сложные события. Например, «выпадение четного числа очков при одном бросании игральной кости»
Вероятность события Если в некотором испытании существует n равновозможных попарно несовместных исхода и m из них благоприятствуют событию А, то вероятностью наступления события А называют отношение m / n
Задача Найти вероятность появления при одном бросании кости числа очков, большего 4
Задача Поверхность рулетки разделена На 8 равных частей. Найти вероятность того, что после раскручивания стрелка рулетки остановится на закрашенной части
Если событие А - достоверное, то ему благоприятствуют все возможные исходы испытания, т. e. m = n , тогда Если событие А - достоверное, то ему благоприятствуют все возможные исходы испытания, т. e. m = n , тогда Р(А) = m/n = 1
Задача Перечислите все элементарные возможные события, которые могут произойти в результате: а) подбрасывания монеты б) подбрасывания тетраэдра с гранями, занумерованными числами 1, 2, 3, 4
Задача В ящике находятся 2 белых и 3 черных шара. Наугад вынимается один шар. Какова вероятность того, что вынутый шар а) белый б) черный