PPt4Web Хостинг презентаций

Главная / Информатика / MSC.Nastran 102 2001 - 07
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: MSC.Nastran 102 2001 - 07


Скачать эту презентацию

Презентация на тему: MSC.Nastran 102 2001 - 07


Скачать эту презентацию

№ слайда 1 Раздел 7 Анализ переходного процесса
Описание слайда:

Раздел 7 Анализ переходного процесса

№ слайда 2 Раздел 7. Анализ переходного процесса ВВЕДЕНИЕ В АНАЛИЗ ПЕРЕХОДНОГО ПРОЦЕССА…..…
Описание слайда:

Раздел 7. Анализ переходного процесса ВВЕДЕНИЕ В АНАЛИЗ ПЕРЕХОДНОГО ПРОЦЕССА…..……………………..7 - 4 ПРЯМОЙ МЕТОД АНАЛИЗА………………………………………………………..7 - 5 ДЕМПФИРОВАНИЕ ПРИ ПРМОМ МЕТОДЕ АНАЛИЗА.……………………….7 - 9 МОДАЛЬНЫЙ МЕТОД АНАЛИЗА..………………………………………………..7 - 10 ДЕМПФИРОВАНИЕ ПРИ МОДАЛЬНОМ МЕТОДЕ АНАЛИЗА.……………….7 - 12 ВЫЧИСЛЕНИЕ РЕЗУЛЬТАТОВ ПРИ МОДАЛЬНОМ МЕТОДЕ АНАЛИЗА....7 - 17 УПРАВЛЕНИЕ МОДАМИ.…………………………………………………………….7 - 18 ЗАДАНИЕ ВНЕШНЕГО ВОЗДЕЙСТВИЯ.…………………………………………7 - 19 ОПЕРАТОР TLOAD1…………………………………………………………………..7 - 20 ОПЕРАТОР TLOAD2…………………………………………………………………..7 - 22 КОМБИНАЦИЯ НАГРУЗОК – ОПЕРАТОР DLOAD………………………..…….7 - 23 ОПЕРАТОР DAREA……………………………………………………………………7 - 24 ПРИМЕР ОПЕРАТОРА DAREA.……………………………………………………..7 - 25 СТАТИЧЕСКАЯ НАГРУЗКА – НЕПРЯМОЙ МЕТОД ЗАДАНИЯ..………………7 - 26

№ слайда 3 Анализ переходного процесса (продолж.) СТАТИЧЕСКАЯ НАГРУЗКА – ПРЯМОЙ МЕТОД ЗАДАН
Описание слайда:

Анализ переходного процесса (продолж.) СТАТИЧЕСКАЯ НАГРУЗКА – ПРЯМОЙ МЕТОД ЗАДАНИЯ..………………….…7 - 28 ЗАМЕЧАНИЯ К СПОСОБУ ЗАДАНИЮ ВНЕШНЕГО ВОЗДЕЙСТВИЯ………….7 - 30 НАЧАЛЬНЫЕ УСЛОВИЯ.………………………………………………………………..7 - 32 ОПЕРАТОР TSTEP…...…………………………………………………………………...7 - 35 МЕТОДЫ ВЫЧИСЛЕНИЯ РЕЗУЛЬТАТОВ...…………………………………………7 - 38 ПРИМЕНЕНИЕ МОДАЛЬНОГО И ПРЯМОГО МЕТОДОВ АНАЛИЗА..…………..7 - 39 УПРАВЛЕНИЕ РЕШЕНИЕМ ПРИ АНАЛИЗЕ ПЕРЕХОДНОГО ПРОЦЕССА..…..7 - 40 ВИДЫ ВЫЧИСЛЯЕМЫХ ВЕЛИЧИН………..………………………………………….7 - 42 ПРИМЕР №3 – АНАЛИЗ ПЕРЕХОДНОГО ПРОЦЕССА ПРЯМЫМ МЕТОДОМ…7 - 43 ВХОДНОЙ ФАЙЛ ДЛЯ ПРИМЕРА №3….………………………………………….7 - 45 РЕЗУЛЬТАТЫ РЕШЕНИЯ ПРИМЕРА №3…….…………………………………..7 - 46 ПРИМЕР №4 – АНАЛИЗ ПЕРЕХОДНОГО ПРОЦЕССА МОДАЛЬНЫМ МЕТОДОМ………………………………………………………………………...…………7 - 51 ВХОДНОЙ ФАЙЛ ДЛЯ ПРИМЕРА №4.…………………………………………….7 - 53 РЕЗУЛЬТАТЫ РЕШЕНИЯ ПРИМЕРА №4..………………………………………..7 - 55

№ слайда 4 Введение в анализ переходного процесса Вычисление отклика на воздействие, завися
Описание слайда:

Введение в анализ переходного процесса Вычисление отклика на воздействие, зависящее от времени. Воздействие в явной форме зависит от времени. Все приложенные воздействия известны в любой момент времени. Вычисляются, обычно перемещения и ускорения узлов, силы и напряжения в элементах. Два типа анализа – прямой и модальный.

№ слайда 5 Прямой метод анализа Уравнение колебаний Отклик вычисляется в дискретные моменты
Описание слайда:

Прямой метод анализа Уравнение колебаний Отклик вычисляется в дискретные моменты времени с шагом . Для представления и в дискретные моменты времени используется метод центральных конечных разностей Примечание: эти же уравнения используются в MSC.Nastran для вычисления скоростей и ускорений при подсчете результатов.

№ слайда 6 Прямой метод анализа Для численного интегрирования используется метод центральны
Описание слайда:

Прямой метод анализа Для численного интегрирования используется метод центральных разностей (с учетом осреднения внешнего воздействия по трем последовательным моментам времени)

№ слайда 7 Прямой метод анализа Решение Решается путем декомпозиции матрицы A1 и умножения
Описание слайда:

Прямой метод анализа Решение Решается путем декомпозиции матрицы A1 и умножения на правую часть вышеприведенного уравнения. Метод аналогичен классическому методу Newmark-Beta.

№ слайда 8 Прямой метод анализа Матрицы M, B и K неизменны во времени. Если t неизменно в п
Описание слайда:

Прямой метод анализа Матрицы M, B и K неизменны во времени. Если t неизменно в продолжении всего решения, то декомпозицию матрицы A1 необходимо выполнять только один раз. При изменении t необходимо произвести повторную декомпозицию матрицы A1 (что может быть затратной операцией). Временной интервал вывода результатов может быть больше шага решения (интегрирования) (например, при шаге решения t = 0,001 с и выводе результатов на каждом пятом шаге интегрирования шаг результатов будет равен 0,005 с).

№ слайда 9 Демпфирование при прямом методе анализа Матрица демпфирования B составляется из
Описание слайда:

Демпфирование при прямом методе анализа Матрица демпфирования B составляется из нескольких матриц: где B1 - элементы демпфирования (VISC,DAMP) + B2GG B2 - прямой ввод матриц B2PP + передаточные функции G - коэффициент глобального конструкционного демпфирования (PARAM,G) W3 - характерная частота - рад/с (PARAM,W3) K1 - глобальная матрица жесткости Ge - коэффициент конструкционного демпфирования в элементе (параметр GE в операторе MATi) W4 - характерная частота - рад/с (PARAM,W4) KE - матрица жесткости элемента В анализе переходного процесса не допустимы комплексные коэффициенты. Поэтому конструкционное демпфирование учитывается введением эквивалентного вязкого демпфирования. По умолчанию значения параметров W3, W4 равны 0. Если пользователь не задаст им ненулевые значения, соответствующие слагаемые в приведенном уравнении будут игнорироваться.

№ слайда 10 Модальный метод анализа Преобразуем физические координаты в модальные. (1) Време
Описание слайда:

Модальный метод анализа Преобразуем физические координаты в модальные. (1) Временно пренебрежем демпфированием. (2) Подставим уравнение (1) в уравнение (2) (3) Умножим обе части уравнения (2) слева на [ T] (4) где TM - модальная матрица масс (диагональная) TK - модальная матрица жесткости (диагональная) TP - модальный вектор воздействия

№ слайда 11 Модальный метод анализа Уравнение (4) может быть записано как для несвязанной си
Описание слайда:

Модальный метод анализа Уравнение (4) может быть записано как для несвязанной системы с одной степенью свободы (СС): (5) где mi - i-я модальная масса ki - i-я модальная жесткость pi - i-ое модальное воздействие

№ слайда 12 Демпфирование при модальном методе анализа Для матрицы демпфирования B преобразо
Описание слайда:

Демпфирование при модальном методе анализа Для матрицы демпфирования B преобразование с использованием собственного вектора не приводит к диагонализации результата: Связанные задачи решаются в модальных координатах методом типа Newmark-Beta (аналогичного используемому при прямом анализе). где

№ слайда 13 Демпфирование при модальном методе анализа При использовании модального демпфиро
Описание слайда:

Демпфирование при модальном методе анализа При использовании модального демпфирования каждая мода имеет коэффициент демпфирования bi. Уравнения колебаний становятся несвязанными

№ слайда 14 Демпфирование при модальном методе анализа Модальный отклик несвязанной системы
Описание слайда:

Демпфирование при модальном методе анализа Модальный отклик несвязанной системы с одной СС вычисляется с помощью интеграла Дюамеля. Интеграл Дюамеля:

№ слайда 15 Демпфирование при модальном методе анализа Наиболее эффективно использовать мода
Описание слайда:

Демпфирование при модальном методе анализа Наиболее эффективно использовать модальное демпфирование, поскольку при этом уравнения несвязанные Оператор TABDMP1 задает коэффициент модального демпфирования. Type = G (по умолчанию), CRIT или Q Например: для демпфирования, составляющего 10% от критического

№ слайда 16 Демпфирование при модальном методе анализа Оператор TABDMP1 в Bulk Data Section
Описание слайда:

Демпфирование при модальном методе анализа Оператор TABDMP1 в Bulk Data Section инициируется оператором SDAMPING в Case Control Section. fi (в Гц) и gi составляют пару “частота - демпфирование”. Демпфирование для мод собственных колебаний определяется линейной интерполяцией (за пределами таблицы производится линейная экстраполяция). ENDT – символ конца таблицы. Например: моды имеют частоты 1,0; 2,5; 3,6 и 5,5 Гц. Может быть добавлено также немодальное демпфирование (PARAM, G; VISC; DAMP; GE в операторе MATi) Вследствие связанности уравнений будет применено прямое интегрирование и вычислительные затраты вырастут Практическая рекомендация: при модальном анализе переходного процесса используйте только модальное демпфирование (TABDMP1). Если необходимо дискретное демпфирование – используйте прямой анализ.

№ слайда 17 Вычисление результатов при модальном методе анализа Результат расчета в физическ
Описание слайда:

Вычисление результатов при модальном методе анализа Результат расчета в физических координатах вычисляется путем суммирования модальных откликов. Вычислительные затраты при изменении t при модальном методе не столь высоки, как при прямом методе. Однако, по-прежнему рекомендуется постоянное значение t. Шаг вывода результатов может быть больше шага решения (интегрирования).

№ слайда 18 Управление модами Могут быть необходимыми не все вычисленные моды. Часто только
Описание слайда:

Управление модами Могут быть необходимыми не все вычисленные моды. Часто только небольшого количество низших мод достаточно для вычисления динамического отклика. Оператор PARAM,LFREQ задает нижнюю границу частотного диапазона учитываемых мод. Оператор PARAM,HFREQ задает верхнюю границу частотного диапазона учитываемых мод. Оператор PARAM,LMODES задает количество низших мод, учитываемых при расчете. Неучет высших мод обуславливает отсутствие в отклике высокочастотных составляющих.

№ слайда 19 Задание внешнего воздействия Задание воздействия как функции времени. В MSC.Nast
Описание слайда:

Задание внешнего воздействия Задание воздействия как функции времени. В MSC.Nastran предусматриваются различные методы: TLOAD1 - “грубая сила”: табличное задание “время-сила” TLOAD2 - эффективное аналитическое задание LSEQ - конвертация статических нагрузок в динамические

№ слайда 20 Оператор TLOAD1 Задает воздействие в форме: где A - оператор (символ) пространст
Описание слайда:

Оператор TLOAD1 Задает воздействие в форме: где A - оператор (символ) пространственного распределения воздействия и масштабного фактора (DAREA, статическая нагрузка, тепловая нагрузка или LSEQ) - временной сдвиг (оператор DELAY) F(t- ) - таблица (оператор TABLEDi) Оператор DELAY задает СС и временной сдвиг (может использоваться только с оператором DAREA). Оператор TABLEDi задает пары “время- воздействие”. Оператор TLOAD1 инициируется оператором DLOAD в Case Control Section.

№ слайда 21 Оператор TLOAD1 Тип воздействия задается параметром TYPE. В этом разделе будет р
Описание слайда:

Оператор TLOAD1 Тип воздействия задается параметром TYPE. В этом разделе будет рассматриваться воздействие только силовыми факторами (первый ряд таблицы). Вынужденные перемещения – см. Раздел 12.

№ слайда 22 Оператор TLOAD2 Задает воздействие в форме: где A оператор (символ) пространстве
Описание слайда:

Оператор TLOAD2 Задает воздействие в форме: где A оператор (символ) пространственного распределения воздействия и масштабного фактора (DAREA, статическая нагрузка, тепловая нагрузка или LSEQ) задается оператором DELAY (может использоваться только с оператором DAREA) TYPE задается как в операторе TLOAD1 T1,T2 временные константы (T2>T1) F частота (Гц) P фазовый угол (градусы) C экспоненциальный коэффициенты B показатель степени Оператор TLOAD2 инициируется оператором DLOAD в Case Control Section.

№ слайда 23 Комбинация нагрузок – оператор DLOAD Эффективное воздействие PC является суммой
Описание слайда:

Комбинация нагрузок – оператор DLOAD Эффективное воздействие PC является суммой различных компонентов нагрузки PK где SC – глобальный масштабный фактор SK – масштабный фактор для k-го компонента PK – идентификатор оператора TLOAD Операторы TLOAD1 и TLOAD2 должны иметь уникальные идентификаторы. Оператор DLOAD “объединяет” операторы TLOADi. Оператор DLOAD в Bulk Data Section инициируется оператором DLOAD в Case Control Section.

№ слайда 24 Оператор DAREA Определяет степени свободы, к которым прикладывается нагрузка, и
Описание слайда:

Оператор DAREA Определяет степени свободы, к которым прикладывается нагрузка, и соответствующий масштабный фактор. “Взаимоотношения” с другими операторами:

№ слайда 25 Пример оператора DAREA DLOAD = 35 Результат: нагрузка, задаваемая оператором TLO
Описание слайда:

Пример оператора DAREA DLOAD = 35 Результат: нагрузка, задаваемая оператором TLOAD1, умножается на 5,2, “сдвигается” по времени (в сторону запаздывания) на 0,2с и прикладывается к узлу 30 в направлении оси X (компонент T1).

№ слайда 26 Статическая нагрузка – непрямой метод задания Задание статических нагрузок, прик
Описание слайда:

Статическая нагрузка – непрямой метод задания Задание статических нагрузок, прикладываемых “динамически”. Оператор LSEQ в Bulk Data Section инициируется оператором LOADSET в Case Control Section. Оператор LSEQ заменяет оператор DAREA, задавая идентификатор статической нагрузки. Взаимодействие операторов между собой DLOAD LOADSET Case Control Bulk Data TLOAD DLOAD LSEQ Динамика Идентификатор Статическая нагрузка Зависимость от времени Перекрестная Пространственное ссылка распределение

№ слайда 27 Статическая нагрузка – непрямой метод задания DLOAD = 25 LOADSET = 27 TLOAD1 25
Описание слайда:

Статическая нагрузка – непрямой метод задания DLOAD = 25 LOADSET = 27 TLOAD1 25 28 LSEQ 27 28 100 PLOAD4 100 ….

№ слайда 28 Статическая нагрузка – прямой метод задания Задание статических нагрузок, прикла
Описание слайда:

Статическая нагрузка – прямой метод задания Задание статических нагрузок, прикладываемых “динамически”. Идентификатор непосредственно инициирует статическую нагрузку (например, PLOAD4) DLOAD Case Control Bulk Data TLOAD Динамика Идентификатор Зависимость от времени Статическая нагрузка

№ слайда 29 Статическая нагрузка – прямой метод задания DLOAD = 25 TLOAD1 25 100 PLOAD4 100
Описание слайда:

Статическая нагрузка – прямой метод задания DLOAD = 25 TLOAD1 25 100 PLOAD4 100 …..

№ слайда 30 Замечания к способу задания внешнего воздействия Учитывайте осреднение нагрузок
Описание слайда:

Замечания к способу задания внешнего воздействия Учитывайте осреднение нагрузок (1/3). Это сделает нагрузки более плавными и уменьшит влияние погрешностей. Избегайте “разрывов” в нагрузках. Это может приводить к различиям в результатам расчетов, выполняемых на разных ЭВМ. Если N· t = t(ABC), тогда MSC.Nastran вычислит: Force = (A+C)/2 = B. Однако, вследствие ошибок округления, на одной ЭВМ N· t = t(A-) и тогда Force = A. На другой ЭВМ может быть N· t = t(C+) и тогда Force = C. Результаты интегрирования будут различными в зависимости от того, чему равно N· t: A, B или C.

№ слайда 31 Замечания к способу задания внешнего воздействия Сгладьте разрыв в силе на участ
Описание слайда:

Замечания к способу задания внешнего воздействия Сгладьте разрыв в силе на участке в один шаг t.

№ слайда 32 Начальные условия Начальные значения перемещений и/или скоростей можно учесть пр
Описание слайда:

Начальные условия Начальные значения перемещений и/или скоростей можно учесть при использовании прямого метода анализа переходного процесса с помощью оператора TIC в Bulk Data Section. В стандартном модальном методе анализа учесть ненулевые начальные условия нельзя. Оператор TIC инициируется оператором IC в Case Control Section. Внимание: если начальные условия не указаны – они нулевые. Начальные условия можно задать только для СС, входящих в A-set. Значения {u0}, {u-1}, {P0} и {P-1}, необходимые для вычисления {u1}, определяются с использованием начальных условий, при этом ускорения при t < 0 полагаются равными нулю (скорости постоянны). Нагрузка, заданная пользователем для t = 0, заменяется значением:

№ слайда 33 Начальные условия Практическая рекомендация: при любом типе динамического воздей
Описание слайда:

Начальные условия Практическая рекомендация: при любом типе динамического воздействия, по-возможности, предусматривать хотя бы один шаг решения с “нулевой” нагрузкой (до того, как ее величина примет действительное значение).

№ слайда 34
Описание слайда:

№ слайда 35 Оператор TSTEP Задает шаг интегрирования для прямого и модального методов анализ
Описание слайда:

Оператор TSTEP Задает шаг интегрирования для прямого и модального методов анализа. Ошибки интегрирования растут с ростом собственных частот. Рекомендуется, чтобы на периоде самой высокочастотной составляющей отклика укладывалось не меньше восьми шагов t. Оператор TSTEP в Bulk Data Section, задающий шаги решения и вывода результатов, инициируется оператором TSTEP в Case Control Section. Если t постоянен, то затраты на интегрирование прямо пропорциональны количеству шагов по времени. Необходимо задавать длительность моделирования достаточную для исследования низкочастотных составляющих отклика. Пользователь может изменить шаг. Предполагается постоянство при t < N t1 . На базе вычисляются новые начальные условия для продолжения интегрирования начиная с {un}. Допущение постоянства ускорений обеспечивает плавность интегрирования в “переходной” зоне.

№ слайда 36 Оператор TSTEP Начальные условия для нового этапа интегрирования: Примечание: не
Описание слайда:

Оператор TSTEP Начальные условия для нового этапа интегрирования: Примечание: необходимо снова вычислить матрицы A1 - A4 (см. стр. 7-7), а матрицу A1 - еще и обратить.

№ слайда 37
Описание слайда:

№ слайда 38 Методы вычисления результатов Предусмотрены три метода вычисления перемещений и
Описание слайда:

Методы вычисления результатов Предусмотрены три метода вычисления перемещений и напряжений в модальном анализе: модальных перемещений, матричный и модальных ускорений. В методе модальных перемещений по ним вычисляются физические перемещения, а затем - определяются напряжения. Количество операций пропорционально количеству шагов по времени (T). В матричном методе вычисляются физические перемещения и напряжения в элементах для каждой моды, а затем вычисляются суммарные перемещения и напряжения как суммы этих величин по всем модам. Вычислительные затраты пропорциональны количеству мод (H). Поскольку обычно H << T, матричный метод “дешевле”. Матричный метод задан “по умолчанию” и рекомендуется для большинства случаев. Метод модальных перемещений может быть инициирован с помощью параметра PARAM, DDRMM, -1. Метод модальных ускорений автоматически задействуется при вычислении квазистатического отклика всех высокочастотных мод (требуется также “подключение” метода модальных перемещений, подробнее - см. Приложение F).

№ слайда 39 Применение модального и прямого методов анализа
Описание слайда:

Применение модального и прямого методов анализа

№ слайда 40 Управление решением при анализе переходного процесса Executive Control Section S
Описание слайда:

Управление решением при анализе переходного процесса Executive Control Section SOL <см. таблицу> Case Control Section DLOAD (требуется при обоих методах решения) LOADSET (может применяться при обоих методах) METHOD (требуется при модальном методе) SDAMPING (может применяться при модальном методе) IC (может применяться при прямом методе) TSTEP (требуется при обоих методах решения)

№ слайда 41 Управление решением при анализе переходного процесса Bulk Data Section ASET,OMIT
Описание слайда:

Управление решением при анализе переходного процесса Bulk Data Section ASET,OMIT (может применяться при обоих методах) EIGRL or EIGR (требуется при модальном методе) TSTEP (требуется при обоих методах решения) TIC (может применяться при прямом методе) TLOADi (требуется при обоих методах решения) LSEQ (может применяться при обоих методах) TABLEDi (может применяться при обоих методах) DAREA (требуется при обоих методах решения*) DELAY (может применяться при обоих методах) DLOAD (может применяться при обоих методах) TABDMP1 (может применяться при модальном методе) *Идентификатор оператора DAREA необходим; если же применяется оператор LSEQ, то сам оператор DAREA может отсутствовать.

№ слайда 42 Виды вычисляемых величин Результаты вычислений для узлов ACCELERATION DISPLACEME
Описание слайда:

Виды вычисляемых величин Результаты вычислений для узлов ACCELERATION DISPLACEMENT (или VECTOR) GPSTRESS NLLOAD (вывод значений нелинейных нагрузок) OLOAD (вывод значений прилагаемых нагрузок) SACCELERATION (вывод результатов решения для A-set SDISPLACEMENT при прямом методе анализа, для модальных SVELOCITY переменных – при модальном методе анализа) SVECTOR (вывод результатов вычислений собственных форм для A-set) SPCFORCES VELOCITY MPCFORCE Результаты вычислений для элементов ELSTRESS (или STRESS) ELFORCE (или FORCE) STRAIN Специальный оператор OTIME (задание моментов времени, в которые должны выводиться результаты; работает совместно с оператором TSTEP)

№ слайда 43 Пример №3 Анализ переходного процесса прямым методом
Описание слайда:

Пример №3 Анализ переходного процесса прямым методом

№ слайда 44 Пример №3. Анализ переходного процесса прямым методом Используя модель из Пример
Описание слайда:

Пример №3. Анализ переходного процесса прямым методом Используя модель из Примера №1, прямым методом определите колебания плоской пластины под действием возмущения, зависящего от времени. Конструкция нагружается давлением 1 фунт/кв. дюйм, изменяющимся с f=250 Гц, а также силой в 50 фунтов, приложенной к углу пластины и изменяющейся с f=250 Гц и сдвинутой по фазе на 180o относительно давления. Длительность действия обоих возмущений -0,008 с. Конструкционное демпфирование g=0,06. Указанное демпфирование конвертировать в вязкое на частоте 250 Гц. Длительность процесса 0,04 с. Рис. 7-1. Нагрузки и граничные условия.

№ слайда 45 Входной файл для Примера №3
Описание слайда:

Входной файл для Примера №3

№ слайда 46 Результаты решения Примера №3
Описание слайда:

Результаты решения Примера №3

№ слайда 47 Результаты решения Примера №3
Описание слайда:

Результаты решения Примера №3

№ слайда 48 Результаты решения Примера №3
Описание слайда:

Результаты решения Примера №3

№ слайда 49 Результаты решения Примера №3
Описание слайда:

Результаты решения Примера №3

№ слайда 50 Результаты решения Примера №3
Описание слайда:

Результаты решения Примера №3

№ слайда 51 Пример №4 Анализ переходного процесса модальным методом
Описание слайда:

Пример №4 Анализ переходного процесса модальным методом

№ слайда 52 Пример №4. Анализ переходного процесса модальным методом Используя модель из При
Описание слайда:

Пример №4. Анализ переходного процесса модальным методом Используя модель из Примера №1, модальным методом определите колебания плоской пластины под действием возмущения, зависящего от времени. Конструкция нагружается давлением 1 фунт/кв. дюйм, изменяющимся с f=250 Гц, а также силой в 25 фунтов, приложенной к углу пластины и изменяющейся с f=250 Гц. Сила прикладывается начиная с 0,004 с. Действие обоих возмущений заканчивается через 0,008 с. Модальное демпфирование =0,06 для всех мод. Длительность процесса 0,04 с.

№ слайда 53 Входной файл для Примера №4
Описание слайда:

Входной файл для Примера №4

№ слайда 54 Входной файл для Примера №4
Описание слайда:

Входной файл для Примера №4

№ слайда 55 Результаты решения Примера №4
Описание слайда:

Результаты решения Примера №4

№ слайда 56 Результаты решения Примера №4
Описание слайда:

Результаты решения Примера №4

№ слайда 57 Результаты решения Примера №4
Описание слайда:

Результаты решения Примера №4

№ слайда 58 Результаты решения Примера №4
Описание слайда:

Результаты решения Примера №4

№ слайда 59 Результаты решения Примера №4
Описание слайда:

Результаты решения Примера №4

№ слайда 60
Описание слайда:

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru