PPt4Web Хостинг презентаций

Главная / Геометрия / Геометрия как наука
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Геометрия как наука


Скачать эту презентацию

Презентация на тему: Геометрия как наука


Скачать эту презентацию

№ слайда 1 ГЕОМЕТРИЯ ученицы 7 класса А МОУ СОШ №9 г. Георгиевска Цаканян Нуне
Описание слайда:

ГЕОМЕТРИЯ ученицы 7 класса А МОУ СОШ №9 г. Георгиевска Цаканян Нуне

№ слайда 2 План Геометрия Разделы геометрии История геометрии Геометрия в космосе Геометрия
Описание слайда:

План Геометрия Разделы геометрии История геометрии Геометрия в космосе Геометрия Лобачевского

№ слайда 3 Геометрия Слово геометрия было составлено из двух греческих слов и переводится н
Описание слайда:

Геометрия Слово геометрия было составлено из двух греческих слов и переводится на русский язык как "землемерие". Геометрия, как и другие науки, возникла из практики. Само слово геометрия из греческого языка переводится на русский, как "землемерие".

№ слайда 4 Разделы геометрии Геометрия — раздел математики, изучающий пространственные отно
Описание слайда:

Разделы геометрии Геометрия — раздел математики, изучающий пространственные отношения и их обобщения. В геометрии можно условно выделить следующие разделы: Элементарная геометрия — геометрия точек, прямых и плоскостей, а также фигур на плоскости и тел в пространстве. Включает в себя планиметрию и стереометрию. Аналитическая геометрия — геометрия координатного метода. Изучает линии, векторы, фигуры и преобразования, которые задаются алгебраическими уравнениями в аффинных или декартовых координатах, методами алгебры. Дифференциальная геометрия и топология изучает линии и поверхности, задающиеся дифференцируемыми функциями, а также их отображения. Топология — наука о понятии непрерывности в самом общем виде.

№ слайда 5 История геометрии Традиционно считается, что родоначальниками геометрии являются
Описание слайда:

История геометрии Традиционно считается, что родоначальниками геометрии являются древние греки, перенявшие у египтян ремесло землемерия и измерения объёмов тел и превратившие его в науку. Превращение это произошло путём абстрагирования от всяких свойств тел, кроме взаимного положения и величины. Наукой геометрия стала, когда от набора рецептов перешли к установлению общих закономерностей. Греки составили первые систематические и доказательные труды по геометрии. Центральное место среди них занимают составленные около 300 до н. э. «Начала» Евклида. Этот труд и поныне остаётся образцовым изложением в духе аксиоматического метода: все положения выводятся логическим путём из небольшого числа явно указанных и не доказываемых предположений  аксиом. Геометрия греков, называемая сегодня евклидовой, или элементарной, занималась изучением простейших форм: прямых, плоскостей, отрезков, правильных многоугольников и многогранников, конических сечений, а также шаров, цилиндров, призм, пирамид и конусов. Вычислялись их площади и объёмы. Преобразования в основном ограничивались подобием.

№ слайда 6 Геометрия в космосе Геометрия может помочь больше узнать о космосе и космических
Описание слайда:

Геометрия в космосе Геометрия может помочь больше узнать о космосе и космических телах. Например древнегреческий ученный Эратосфен с помощью геометрии измерил длину окружности земного шара. Он обнаружил, что когда Солнце стоит в Сиене (Африка) над головой, в Александрии, расположенной в 800км, оно отклоняется от вертикали на 7°. Эратосфен заключил, что из центра Земли Солнце видно под углом 7° и, следовательно, окружность земного шара равна 360:7•800=41140км. Есть много и других интересных опытов благодаря которым мы все больше и больше узнаем о космосе с помощью геометрии.

№ слайда 7 Геометрия Лобачевского Геометрия Лобачевского (гиперболическая геометрия) — одна
Описание слайда:

Геометрия Лобачевского Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: Через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В геометрии Лобачевского, вместо неё принимается следующая аксиома: Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Геометрия Лобачевского имеет обширные применения как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще.

№ слайда 8 Утверждение геометрии Лобачевского Лобачевский умер в 1856 году. Спустя нескольк
Описание слайда:

Утверждение геометрии Лобачевского Лобачевский умер в 1856 году. Спустя несколько лет была опубликована переписка Гаусса, в том числе несколько восторженных отзывов о геометрии Лобачевского, и это привлекло внимание к трудам Лобачевского. Появляются переводы их на французский и итальянский языки, комментарии видных геометров. Публикуется и труд Бойяи. В 1868 году выходит статья Э.Бельтрами об интерпретациях геометрии Лобачевского. Бельтрами определил метрику плоскости Лобачевского и доказал, что она имеет всюду постоянную отрицательную кривизну. Такая поверхность тогда уже была известна — это псевдосфера Миндинга. Бельтрами сделал вывод, что локально плоскость Лобачевского изометрична участку псевдосферы. Окончательно непротиворечивость геометрии Лобачевского была доказана в 1871 году, после появления модели Клейна. Вейерштрасс посвящает геометрии Лобачевского специальный семинар в Берлинском университете (1870). Казанске физико-математическое общество организует издание полного собрания сочинений Лобачевского, а в 1893 году столетие русского математика отмечается в международном масштабе.

№ слайда 9 КОНЕЦ
Описание слайда:

КОНЕЦ

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru