PPt4Web Хостинг презентаций

Главная / Биология / Симметрия предметов
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Симметрия предметов


Скачать эту презентацию

Презентация на тему: Симметрия предметов


Скачать эту презентацию

№ слайда 1 Изображения предметов на плоскости из окружающего мира имеет ось или центр симме
Описание слайда:

Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе, быту, архитектуре и технике. Изображения предметов на плоскости из окружающего мира имеет ось или центр симметрии. С симметрией мы встречаемся в природе, быту, архитектуре и технике.

№ слайда 2
Описание слайда:

№ слайда 3
Описание слайда:

№ слайда 4
Описание слайда:

№ слайда 5 Геометрическая фигура ( или тело ) называется симметричной относи
Описание слайда:

Геометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок Геометрическая фигура ( или тело ) называется симметричной относительно центра C ( рис.105 ), если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам ( AC = CE ). Точка C называется центром симметрии.

№ слайда 6
Описание слайда:

№ слайда 7 Геометрическая фигура называется симметричной относительно плоскости&n
Описание слайда:

Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’ перпендикулярен плоскости S и делится этой плоскостью пополам ( EA =AE’ ). Плоскость S называется  плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными. Геометрическая фигура называется симметричной относительно плоскости S ( рис.104 ), если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’ перпендикулярен плоскости S и делится этой плоскостью пополам ( EA =AE’ ). Плоскость S называется  плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот ). Они называются зеркально равными.

№ слайда 8 Тело ( фигура ) обладает симметрией вращения ( рис.106&
Описание слайда:

Тело ( фигура ) обладает симметрией вращения ( рис.106 ), если при повороте на угол 360°/n  ( здесь n – целое число ) вокруг некоторой прямой AB ( оси симметрии ) оно полностью совпадает со своим Тело ( фигура ) обладает симметрией вращения ( рис.106 ), если при повороте на угол 360°/n  ( здесь n – целое число ) вокруг некоторой прямой AB ( оси симметрии ) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем  осевую симметрию. 

№ слайда 9 Шар ( сфера ) обладает и центральной, и зеркальной, и симметрией
Описание слайда:

Шар ( сфера ) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии – диаметр шара. Шар ( сфера ) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии – диаметр шара. Круглый конус обладает осевой симметрией; ось симметрии – ось конуса. Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

№ слайда 10 Зеркально-осевая симметрия. Если плоская фигура ABCDE (
Описание слайда:

Зеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямая KL, по которой эти плоскости пересекаются, является осьюсимметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной Зеркально-осевая симметрия. Если плоская фигура ABCDE ( рис.107 ) симметрична относительно плоскости S ( что возможно, если только плоская фигура перпендикулярна плоскости S ), то прямая KL, по которой эти плоскости пересекаются, является осьюсимметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной

№ слайда 11 Центральная симметрия. Если плоская фигура ( ABCDEF, рис.108 ) им
Описание слайда:

Центральная симметрия. Если плоская фигура ( ABCDEF, рис.108 ) имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры (прямая MN, рис.108 ), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии. Центральная симметрия. Если плоская фигура ( ABCDEF, рис.108 ) имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры (прямая MN, рис.108 ), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

№ слайда 12 Параллелограмм имеет только центральную симметрию. Его центр симметрии – то
Описание слайда:

Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей. Параллелограмм имеет только центральную симметрию. Его центр симметрии – точка пересечения диагоналей. Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии – перпендикуляр, проведенный через середины оснований трапеции. Ромб имеет и центральную, и осевую симметрию. Его ось симметрии – любая из его диагоналей; центр симметрии – точка их пересечения.

№ слайда 13 Симметрия в нашем представлении тесно связана с понятием красоты Симметрия в наш
Описание слайда:

Симметрия в нашем представлении тесно связана с понятием красоты Симметрия в нашем представлении тесно связана с понятием красоты Представления о красоте и совершенстве родились и упрочились под воздействием окружающей природы еще у наших далеких предков.. Особенно поражали кристаллы правильностью своих пропорций, безукоризненным повторением формы.

№ слайда 14 Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может бы
Описание слайда:

Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Каждая снежинка – это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией. Все твердые тела состоят из кристаллов

№ слайда 15 Не только кристаллы, большинство творений природы обычно обладают той или иной ф
Описание слайда:

Не только кристаллы, большинство творений природы обычно обладают той или иной формой симметрии. Не только кристаллы, большинство творений природы обычно обладают той или иной формой симметрии. Земля вполне могла бы быть названа царством симметрии. Природа использовала все ее основные виды, которые можно представить по геометрическим соображениям. Подавляющее число живых организмов обладает одной из трех ее видов: шаровидной, лучевой, двусторонняя симметрией.

№ слайда 16
Описание слайда:

№ слайда 17
Описание слайда:

№ слайда 18
Описание слайда:

№ слайда 19
Описание слайда:

№ слайда 20
Описание слайда:

№ слайда 21
Описание слайда:

№ слайда 22
Описание слайда:

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru