PPt4Web Хостинг презентаций

X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Углерод


Скачать эту презентацию

Презентация на тему: Углерод


Скачать эту презентацию

№ слайда 1
Описание слайда:

№ слайда 2 Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главн
Описание слайда:

Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл. Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.

№ слайда 3 В настоящее время известно более миллиона соединений углерода с другими элемента
Описание слайда:

В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад. В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.

№ слайда 4 Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но нес
Описание слайда:

Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе. Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.

№ слайда 5 Углерод входит в состав органических веществ в растительных и живых организмах,
Описание слайда:

Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода). Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).

№ слайда 6 В свободном виде углерод встречается в нескольких аллотропных модификациях – алм
Описание слайда:

В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др. В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.

№ слайда 7
Описание слайда:

№ слайда 8
Описание слайда:

№ слайда 9
Описание слайда:

№ слайда 10
Описание слайда:

№ слайда 11 Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже
Описание слайда:

Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов. Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов.

№ слайда 12 Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из
Описание слайда:

Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при p > 50 тыс. атм. и tо = 1200оC В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико. Плотность алмаза – 3,5 г/см3, tплав=3730С, tкип=4830оС. Алмаз можно получить из графита при p > 50 тыс. атм. и tо = 1200оC В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.

№ слайда 13 Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой
Описание слайда:

Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называют бриллиантом. Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200мг). Ограненный алмаз называют бриллиантом.

№ слайда 14 Графит – устойчивая при нормальных условиях аллотропная модификация углерода, им
Описание слайда:

Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге. Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге.

№ слайда 15 Атомы углерода в графите расположены отдельными слоями, образованными из плоских
Описание слайда:

Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника. Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника.

№ слайда 16 Графит характеризуется меньшей плотностью и твердостью, а также графит может рас
Описание слайда:

Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск. Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск.

№ слайда 17 Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касат
Описание слайда:

Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями. Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями.

№ слайда 18 Он имеет вид черного мелкокристаллического порошка, однако может существовать в
Описание слайда:

Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается. Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.

№ слайда 19 За счет существования различных типов связи и разных способов укладки цепей из у
Описание слайда:

За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также в метеоритном веществе. За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чаоит, а также в метеоритном веществе.

№ слайда 20 Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы
Описание слайда:

Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза. Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

№ слайда 21 Фуллерены – класс химических соединений, молекулы которых состоят только из угле
Описание слайда:

Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников. Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников.

№ слайда 22 Происхождение термина "фуллерен" связано с именем американского архите
Описание слайда:

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников. Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников.

№ слайда 23 В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, вы
Описание слайда:

В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС60, со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС60, со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. Первый способ получения и выделения  твердого кристаллического фуллерена был предложен в 1990 г. В.Кречмером и Д.Хафманом с коллегами в институте ядерной физики в г. Гейдельберге (Германия).

№ слайда 24 В противоположность первым двум, графиту и алмазу, структура которых представляе
Описание слайда:

В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы. В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы.

№ слайда 25 Наиболее эффективный способ получения фуллеренов основан на термическом разложен
Описание слайда:

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. На рисунке показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц , величина тока от 100 до 200 А, напряжение 10-20 В. Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. На рисунке показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц , величина тока от 100 до 200 А, напряжение 10-20 В.

№ слайда 26 Наряду со сфероидальными углеродными структурами, могут образовываться  так
Описание слайда:

Наряду со сфероидальными углеродными структурами, могут образовываться  также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Наряду со сфероидальными углеродными структурами, могут образовываться  также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода.

№ слайда 27 Многослойные нанотрубки отличаются от однослойных значительно более широким разн
Описание слайда:

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций.  Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рисунке. Структура типа "русской матрешки") представляет собой совокупность вложенных друг в  друга однослойных нанотрубок (а). Другая разновидность этой структуры, показанная на рисунке б, представляет собой совокупность вложенных друг в друга призм. Наконец, последняя из приведённых структур (в), напоминает свиток. . Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций.  Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рисунке. Структура типа "русской матрешки") представляет собой совокупность вложенных друг в  друга однослойных нанотрубок (а). Другая разновидность этой структуры, показанная на рисунке б, представляет собой совокупность вложенных друг в друга призм. Наконец, последняя из приведённых структур (в), напоминает свиток. .

№ слайда 28 Хотя фуллерены имеют короткую историю, это направление науки быстро развивается,
Описание слайда:

Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Она включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов. Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Она включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов. Физика фуллеренов занимается исследованием структурных, механических, магнитных, оптических свойств фуллеренов и их соединений. Сюда относится также изучение характера взаимодействия между атомами углерода в этих соединениях, свойства и структура систем, состоящих из молекул фуллеренов. Физика фуллеренов является наиболее продвинутой ветвью в области фуллеренов. Химия фуллеренов связана с созданием и изучением новых химических соединений, основу которых составляютфуллерены, а также изучает химические процессы, в которых они участвуют. Следует отметить, что по концепциям и методам исследования это направление химии во многом принципиально отличается от традиционной химии. Технология фуллеренов включает в себя как методы производства фуллеренов, так и различные их приложения.

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru