Свойства функции у = tg х и ее график. (Алгебра-11) Автор: учитель высшей категории Стрелкова Н. В.
Цели урока: повторить раннее изученные свойства функции у=tgx; научиться строить график функции у=tgx, используя данные свойства функции. на основе анализа графика определить остальные свойства функции научиться решать простейшие уравнения и неравенства с помощью графика функции.
Функция y=tg x и её свойства. 1. Обл. определения: . 2. Множество значений функции: уєR. 3. Периодическая, Т= π. 4. Нечётная функция.
Функция y=tg x возрастает на промежутке 1. Пусть 0 ≤ x1< x2< π∕2 и , 2. Т. к. функция у=sin x возрастает на данном промежутке, то sin х1< sin x2. 3. Т. к. функция у=соs x убывает на данном промежутке, то соs х1> соs x2 и 4.Умножим нер-во (1) на нер-во (2) :
Построение графика функции y=tg x.
Построение графика функции y=tg x.
Свойства функции y=tg x. Нули функции: tg х = 0 при х = πn, nєZ у(х)>0 при хє (0; π/2) и при сдвиге на πn,nєZ. у(х)<0 при хє (-π/2; 0) и при сдвиге на πn, nєZ.
Свойства функции y=tg x. При х = π ∕ 2+πn, nєZ - функция у=tgx не определена. Рассмотрим т. х=π∕2. Слева: sіn x→1, сosx→0 и Точки х = π ∕ 2+πn, nєZ – точки разрыва функции у=tgx.
Свойства функции y=tgx. 1. Обл. определения: . 2. Множество значений функции: уєR. 3. Периодическая, Т= π. 4. Нечётная функция. 5. Возрастает на всей области определения. 6. Нули функции у (х) = 0 при х = πn, nєZ. 7. у(х)>0 при хє (0; π/2) и при сдвиге на πn,nєZ. 8. у(х)<0 при хє (-π/2; 0) и при сдвиге на πn, nєZ. 9. При х = π ∕ 2+πn, nєZ - функция у=tgx не определена. Имеет точки разрыва графика и асимптоты.
Задача №1. Найти все корни уравнения tgx=2 принадлежащих промежутку –π ≤ х ≤ 3π ∕ 2. Решение.
Задача №2. Найти все решения неравенства tgx ≤ 2 принадлежащих промежутку –π ≤ х ≤ 3π ∕ 2. Решение.