ГРАФЫ Презентация создана учителем математики и информатики Ковалевой Анной Леонидовной ГБОУ СОШ №341 г.СПб 2013-2014
Граф – это конечная совокупность вершин, некоторые из которых соединены ребрами т.е. это совокупность точек, называемых вершинами, и линий, соединяющих некоторые из вершин, называемых ребрами или дугами в зависимости от вида графа. (н-р, схема метрополитена, генеалогическое дерево, дерево папок и каталогов и др.)
Виды (примеры) графов: Обычный (неориентированный) граф 2 вершины могут быть соединены только одним ребром. Соединяющие линии называются ребрами. (смежные вершины – это 2 вершины, соединенные ребром)
Ориентированный граф (орграф) - это граф, у которого на линиях, соединяющих вершины, указано направление (соединяющие линии называются дугами)
Нагруженный граф - это граф, у которого около каждого ребра проставлено число, характеризующее связь между соответствующими вершинами (граф с помеченными ребрами).
Сеть- это орграф, у которого около каждого ребра проставлено число, характеризующее связь между соответствующими вершинами (орграф с помеченными ребрами).
Решение задачи, моделируемой нагруженным графом или сетью, сводится, как правило, к нахождению оптимального в том или ином смысле маршрута, ведущего от одной вершины к другой
Семантический граф- это граф или орграф, у которого около каждого ребра проставлено не число, а иная информация, характеризующее связь между соответствующими вершинами.
Мультиграф 2 вершины соединены 2 ребрами и более (кратные ребра)
Петля в графе (ребро соединяет вершину саму с собой)
Понятие степени вершины графа – это количество ребер, выходящих из одной вершины
СВОЙСТВА ГРАФОВ: 1) Для любого графа сумма степеней вершин равна удвоенному количеству ребер 2) Для любого графа количество вершин нечетной степени всегда четно (аналог задачи: в любой момент времени количество людей, сделавших нечетное количество рукопожатий, четно) 3) В любом графе есть по крайней мере 2 вершины, имеющие одинаковую степень.
1) Маршрут на графе – это последовательность ребер, в которой конец одного ребра служит началом следующего (циклический маршрут – если конец последнего ребра последовательности совпадает с началом 1-го ребра) 2) Цепь – это маршрут, в котором каждое ребро содержится не более одного раза 3) Цикл – это цепь, являющаяся циклическим маршрутом 4) Простая цепь – это цепь, проходящая через каждую свою вершину ровно 1 раз 5) Простой цикл – это цикл, являющийся простой цепью 6) Связанные вершины – это вершины (например, А и B), для которых существует цепь, начинающаяся в А и заканчивающаяся в B 7) Связный граф – это граф, у которого любые 2 вершины связанны. Если граф несвязен, то в нем можно выделить так называемые связанные компоненты (т.е. множества вершин, соединенных ребрами исходного графа, каждое из которых является связным графом) Один и тот же граф может быть изображен по-разному.
Пример 1 V={1,2,3,4,5,6,7,8,9,10}-это множество вершин графа. Для каждого из перечисленных ниже случаев изобразите граф и определите все степени вершин а) вершины x y соединены ребром тогда и только тогда, когда (x-y)/3 целое число б) вершины x y соединены ребром тогда и только тогда, когда x+y=9 в) вершины x y соединены ребром тогда и только тогда, когда x+y содержится в множестве V={1,2,3,4,5,6,7,8,9,10} г) вершины x y соединены ребром тогда и только тогда, когда |x-y|
а)
б)
в)
Пример 2: Решение логических задач 1) Может ли в государстве, в котором из каждого города выходят ровно 3 дороги, быть ровно 100 дорог? Ответ: Нет (по формуле 3n=2*100, откуда n-количество городов- не целое) 2) – Наша шпионская сеть была хорошо законспирирована, - признался на допросе агент 007. – В ней было 77 агентов, но каждый знал только семерых. Почему наверняка можно утверждать, что агент врет? Ответ: По условию задачи 7*77=2*n, откуда n - не целое.
Способы представления графов: 1) графический 2) табличный (таблица смежности)
Пример 3 Дан граф. Выбрать его табличное представление Выбрать его табличное представление:
Пример 4 Сколько различных путей существует из А в К. 1 СПОСОБ РЕШЕНИЯ: РУЧНОЙ (ВРУЧНУЮ СЧИТАЕМ КОЛИЧЕСТВО ПУТЕЙ ИЗ А В К) ОТВЕТ: 17 2 СПОСОБ РЕШЕНИЯ: ПОСТРОЕНИЕ ДЕРЕВА РЕШЕНИЯ ОТВЕТ: 17
3 СПОСОБ РЕШЕНИЯ: с помощью построения таблицы (вершина, куда идем, количество путей) № просмотра 1 2 3 4 5 6 7 8 9 10 Вершина К И Ж Л Е Д В Г Б А Куда идем - К К К Ж,Л, К И,Ж Д,Е,Ж В,Е В,Д Б,Г К-во путей 1 1 1 1 3 2 6 9 8 17