PPt4Web Хостинг презентаций

Главная / Геометрия / Модели многогранников
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Модели многогранников


Скачать эту презентацию

Презентация на тему: Модели многогранников


Скачать эту презентацию



№ слайда 1
Описание слайда:

№ слайда 2 Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в
Описание слайда:

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Но теория многогранников является и современным разделом математики. Она тесно связана с топологией, теорией графов, имеет большое значение как для теоретических исследований по геометрии, так и для практических приложений в других разделах математики, например, в алгебре, теории чисел, прикладной математики - линейном программировании, теории оптимального управления. Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Но теория многогранников является и современным разделом математики. Она тесно связана с топологией, теорией графов, имеет большое значение как для теоретических исследований по геометрии, так и для практических приложений в других разделах математики, например, в алгебре, теории чисел, прикладной математики - линейном программировании, теории оптимального управления.

№ слайда 3
Описание слайда:

№ слайда 4 Существует пять видов правильных многогранников: тетраэдр, гексаэдр (куб), октаэ
Описание слайда:

Существует пять видов правильных многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр, икосаэдр. Существует пять видов правильных многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр, икосаэдр. Почему правильные многогранники получили такие имена? Это связано с числом их граней. Тетраэдр имеет 4 грани, в переводе с греческого "тетра" - четыре, "эдрон" - грань. Гексаэдр (куб) имеет 6 граней, "гекса" - шесть; Октаэдр - восьмигранник, "окто" - восемь; Додекаэдр - двенадцатигранник, "додека" - двенадцать; Икосаэдр имеет 20 граней, "икоси" - двадцать.

№ слайда 5 Тетраэдр (четырёхгранник)— многогранник с четырьмя треугольными гранями, в каждо
Описание слайда:

Тетраэдр (четырёхгранник)— многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер. Тетраэдр (четырёхгранник)— многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

№ слайда 6
Описание слайда:

№ слайда 7 Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани кото
Описание слайда:

Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра. Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра.

№ слайда 8
Описание слайда:

№ слайда 9 Октаэдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») —
Описание слайда:

Октаэдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников, так называемых, Платоновых тел. Октаэдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников, так называемых, Платоновых тел.

№ слайда 10
Описание слайда:

№ слайда 11 Додекаэдр (от греч. δώδεκα — двенадцать и εδρον — грань), двенадцатигранник — пр
Описание слайда:

Додекаэдр (от греч. δώδεκα — двенадцать и εδρον — грань), двенадцатигранник — правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Додекаэдр (от греч. δώδεκα — двенадцать и εδρον — грань), двенадцатигранник — правильный многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников.

№ слайда 12
Описание слайда:

№ слайда 13 Икосаэдр (от греч. εικοσάς, «двадцать» и греч. -εδρον, «грань», «лицо», «основан
Описание слайда:

Икосаэдр (от греч. εικοσάς, «двадцать» и греч. -εδρον, «грань», «лицо», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр (от греч. εικοσάς, «двадцать» и греч. -εδρον, «грань», «лицо», «основание») — правильный выпуклый многогранник, двадцатигранник, одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12.

№ слайда 14
Описание слайда:

№ слайда 15 Но есть и такие многогранники, у которых все многогранные углы равны, а грани -
Описание слайда:

Но есть и такие многогранники, у которых все многогранные углы равны, а грани - правильные, но разноименные правильные многоугольники. Многогранники такого типа называются равноугольно полуправильными многогранниками. Впервые многогранники такое типа открыл Архимед. Им подробно описаны 13 многогранников, которые позже в честь великого ученого были названы телами Архимеда. Это усеченный тетраэдр, усеченный оксаэдр, усеченный икосаэдр, усеченный куб, усеченный додекаэдр, кубооктаэдр, икосододекаэдр, усеченный кубооктаэдр усеченный икосододекаэдр, ромбокубооктаэдр, ромбоикосододекаэдр, "плосконосый" (курносый) куб, "плосконосый" (курносый) додекаэдр.

№ слайда 16 Кубооктаэдр — полуправильный многогранник, состоящий из 14 граней (8 правильных
Описание слайда:

Кубооктаэдр — полуправильный многогранник, состоящий из 14 граней (8 правильных треугольников и 6 квадратов). В кубооктаэдре 12 одинаковых вершин, в которых сходятся два треугольника и два квадрата, а также 24 одинаковых ребра, каждое из которых разделяет треугольник и квадрат. Двойственный к кубооктаэдру многогранник — ромбододекаэдр. Кубооктаэдр — полуправильный многогранник, состоящий из 14 граней (8 правильных треугольников и 6 квадратов). В кубооктаэдре 12 одинаковых вершин, в которых сходятся два треугольника и два квадрата, а также 24 одинаковых ребра, каждое из которых разделяет треугольник и квадрат. Двойственный к кубооктаэдру многогранник — ромбододекаэдр.

№ слайда 17
Описание слайда:

№ слайда 18 В икосододекаэдре 30 одинаковых вершин, в которых сходятся два треугольника и дв
Описание слайда:

В икосододекаэдре 30 одинаковых вершин, в которых сходятся два треугольника и два пятиугольника, а также 60 одинаковых рёбер, каждое из которых разделяет треугольник и пятиугольник. В икосододекаэдре 30 одинаковых вершин, в которых сходятся два треугольника и два пятиугольника, а также 60 одинаковых рёбер, каждое из которых разделяет треугольник и пятиугольник.

№ слайда 19 Кроме полуправильных многогранников из правильных многогранников - Платоновых те
Описание слайда:

Кроме полуправильных многогранников из правильных многогранников - Платоновых тел, можно получить так называемые Кроме полуправильных многогранников из правильных многогранников - Платоновых тел, можно получить так называемые правильные звездчатые многогранники. Их всего четыре, они называются также телами Кеплера-Пуансо. Кеплер открыл малый додекаэдр, названный им колючим или ежом, и большой додекаэдр. Пуансо открыл два других правильных звездчатых многогранника, двойственных соответственно первым двум: большой звездчатый додекаэдр и большой икосаэдр.

№ слайда 20
Описание слайда:

№ слайда 21
Описание слайда:

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru