Закон сохранения импульса Проект подготовилаученица 10 классаЕлагина М.В.Педагог: Васильева М.В.МОУ КСОШ №132012 год
Основополагающий вопрос: Как экспериментально можно проверить закон сохранения импульса?
Проблемные вопросы: Как изменяется импульс тела при взаимодействии?Где применяется закон сохранения импульса?Каково значение работ Циолковского для космонавтики?
Цели и задачи проекта: определить понятия: «упругий и неупругий удары»;на практическом и виртуальном примере рассмотреть, как выполняется закон сохранения импульса.
Рене Декарт (1596-1650), французский философ, математик, физик и физиолог. Высказал закон сохранения количества движения, определил понятие импульса силы.
Закон сохранения импульса Импульсом тела (количеством движения) называют меру механического движения, равную в классической теории произведению массы тела на его скорость. Импульс тела является векторной величиной, направленной так же, как и его скорость.Закон сохранения импульса служит основой для объяснения обширного круга явлений природы, применяется в различных науках.
Упругий удар Абсолютно упругий удар – столкновения тел, в результате которого их внутренние энергии остаются неизменными. При абсолютно упругом ударе сохраняется не только импульс, но и механическая энергия системы тел. Примеры: столкновение бильярдных шаров, атомных ядер и элементарных частиц. На рисунке показан абсолютно упругий центральный удар: В результате центрального упругого удара двух шаров одинаковой массы, они обмениваются скоростями: первый шар останавливается, второй приходит в движение со скоростью, равной скорости первого шара.
Демонстрационный эксперимент Упругий удар
Неупругий удар Абсолютно неупругий удар: так называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно целое. При неупругом ударе часть механической энергии взаимодействующих тел переходит во внутреннюю, импульс системы тел сохраняется. Примеры неупругого взаимодействия: столкновение слипающихся пластилиновых шаров, автосцепка вагонов и т.д. На рисунке показан абсолютно неупругий удар: После неупругого соударения два шара движутся как одно целое со скоростью, меньшей скорости первого шара до соударения.
Демонстрационный эксперимент Неупругий удар
Практическая проверка закона сохранения импульса
Вычисления: В результате поставленного эксперимента мы получили:mпистолета = 0,154 кгmснаряда = 0,04 кгАС = Lпистолета = 0,1 м Lснаряда = 1,2 мС помощью метромера мы определили время движения снаряда и пистолета, оно составило: t пистолета = 0,6 с tснаряда = 1,4 сТеперь определим скорость снаряда и пистолета во время выстрела по формуле: V= L/tПолучили, что Vпистолета = 0,1:0,6 = 0,16 м/с Vснаряда = 1,2:1,4 = 0,86 м/сИ наконец мы можем вычислить импульс двух этих тел по формуле: P=mVПолучили: Рпистолета = 0,154 * 0,16 = 0,025 кг*м/с Рснаряда = 0,04 *0,86 = 0,034 кг*м/сmп*Vп = mс*Vс0,025 = 0,034 разногласие получилось в связи с действием силы трения на снаряд и погрешностью приборов.
Виртуальная проверка закона сохранения импульса
Примеры применения закона сохранения импульса Закон строго выполняется в явлениях отдачи при выстреле, явлении реактивного движения, взрывных явлениях и явлениях столкновения тел.Закон сохранения импульса применяют: при расчетах скоростей тел при взрывах и соударениях; при расчетах реактивных аппаратов; в военной промышленности при проектировании оружия; в технике - при забивании свай, ковке металлов и т.д.
Закон сохранения импульса лежит в основе реактивного движения. Большая заслуга в развитии теории реактивного движения принадлежит Константину Эдуардовичу Циолковскому. Основоположником теории космических полетов является выдающийся русский ученый Циолковский (1857 - 1935). Он дал общие основы теории реактивного движения, разработал основные принципы и схемы реактивных летательных аппаратов, доказал необходимость использования многоступенчатой ракеты для межпланетных полетов. Идеи Циолковского успешно осуществлены в СССР при постройке искусственных спутников Земли и космических кораблей.
Реактивное движение Движение тела, возникающее вследствие отделения от него части его массы с некоторой скоростью, называют реактивным. Все виды движения, кроме реактивного, невозможны без наличия внешних для данной системы сил, т. е. без взаимодействия тел данной системы с окружающей средой, а для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой. Первоначально система покоится, т. е. ее полный импульс равен нулю. Когда из системы начинает выбрасываться с некоторой скоростью часть ее массы, то (так как полный импульс замкнутой системы по закону сохранения импульса должен оставаться неизменным) система получает скорость, направленную в противоположную сторону.
Выводы: При взаимодействии изменение импульса тела равно импульсу действующей на это тело силы При взаимодействии тел друг с другом изменение суммы их импульсов равно нулю. А если изменение некоторой величины равно нулю, то это означает, что эта величина сохраняется.Практическая и экспериментальная проверка закона прошла успешно и в очередной раз было установлено, что векторная сумма импульсов тел, составляющих замкнутую систему, не изменяется.