Существуют величины, обладающие важным свойством оставаться в процессе движения механической системы неизменными (т.е. сохраняться): Существуют величины, обладающие важным свойством оставаться в процессе движения механической системы неизменными (т.е. сохраняться): импульс энергия момент импульса Законы сохранения этих величин являются фундаментальными принципами физики (они выполняются для любых, а не только механических, систем)
Импульсом частицы (количеством движения) называется вектор, равный произведению массы частицы на ее скорость: Импульсом частицы (количеством движения) называется вектор, равный произведению массы частицы на ее скорость: Запишем уравнение движения частицы (II закон Ньютона через импульс):
Таким образом, производная по времени импульса частицы равна действующей на нее силе: Таким образом, производная по времени импульса частицы равна действующей на нее силе: Если на частицу никакие силы не действуют, то ее импульс сохраняется:
Пусть зависимость силы от времени F(t) известна: Пусть зависимость силы от времени F(t) известна: Импульсом силы называется вектор, равный произведению средней силы <F> на промежуток времени t ее действия:
Рассмотрим произвольную систему частиц. Рассмотрим произвольную систему частиц. Внутренние силы – силы взаимодействия между частицами системы (на рисунке показаны силы взаимодействия i-й частицы системы с остальными) Внешние силы – силы взаимодействия частиц системы с телами, не входящими в систему.
Пусть на каждую частицу системы действуют как внутренние, так и внешние силы. Пусть на каждую частицу системы действуют как внутренние, так и внешние силы. Обозначим: i – порядковый номер частицы, Fi внутр и Fi внеш – равнодействующие всех внутренних и внешних сил, приложенных к i-й частице системы. Импульс системы – это векторная сумма импульсов всех входящих в систему частиц:
Найдем физическую величину, которая определяет скорость изменения импульса системы. Для этого запишем уравнение движения i-й частицы: Найдем физическую величину, которая определяет скорость изменения импульса системы. Для этого запишем уравнение движения i-й частицы: Сложим аналогичные уравнения для всех N частиц:
По III закону Ньютона силы взаимодействия частицы системы друг с другом попарно равны по модулю и противоположны по направлению. Поэтому сумма всех внутренних сил равна нулю: По III закону Ньютона силы взаимодействия частицы системы друг с другом попарно равны по модулю и противоположны по направлению. Поэтому сумма всех внутренних сил равна нулю: Тогда
Производная по времени импульса системы частиц равна сумме всех внешних сил (т.е. изменить импульс системы могут только внешние силы): Производная по времени импульса системы частиц равна сумме всех внешних сил (т.е. изменить импульс системы могут только внешние силы): Приращение импульса системы равно импульсу внешних сил:
Замкнутая система тел (частиц) – система, не взаимодействующая с внешними (не входящими в систему) телами: Замкнутая система тел (частиц) – система, не взаимодействующая с внешними (не входящими в систему) телами: Закон сохранения импульса системы: импульс замкнутой системы частиц с течением времени не изменяется (сохраняется):
1. Если система не замкнута, но сумма внешних сил равна нулю, импульс системы сохраняется: 1. Если система не замкнута, но сумма внешних сил равна нулю, импульс системы сохраняется: Пример. Воздушный шар поднимается с постоянной скоростью вверх. На него действуют: сила тяжести, сила сопротивления воздуха, подъемная сила. Однако сумма этих сил равна нулю и скорость воздушного шара в процессе движения не изменяется.
2. Если проекция на некоторое направление суммы внешних сил равна нулю, проекция на это же направление импульса системы сохраняется: 2. Если проекция на некоторое направление суммы внешних сил равна нулю, проекция на это же направление импульса системы сохраняется: Пример. Тело массой m брошено с начальной скоростью v0 под углом к горизонту. Если пренебречь сопротивлением воздуха, то проекция на горизонтальную ось X действующей на тело внешней силы – силы тяжести – равна нулю. Проекция на ось X импульса тела, равна в начальный момент движения mv0cos = const в любой момент полета.
3. Импульс системы приблизительно сохраняется, если ограниченная по модулю внешняя сила действует в течение очень короткого промежутка времени: 3. Импульс системы приблизительно сохраняется, если ограниченная по модулю внешняя сила действует в течение очень короткого промежутка времени: Пример. Во время взрыва в воздухе снаряда на него действует внешняя сила – сила тяжести. Время взрыва мало, так что импульсом силы тяжести можно пренебречь. Следовательно, импульс снаряда непосредственно перед взрывом равен суммарному импульсу его осколков сразу после взрыва.
Рассмотрим систему частиц с массами m1, m2, …, mi, …, mN. Пусть положения частиц в пространстве заданы радиусами-векторами r1, r2, …, ri, …, rN. Рассмотрим систему частиц с массами m1, m2, …, mi, …, mN. Пусть положения частиц в пространстве заданы радиусами-векторами r1, r2, …, ri, …, rN. Центром масс (центром инерции) системы частиц называется точка C в пространстве, положение которой определяется радиусом-вектором:
1. Импульс p системы частиц равен произведению массы m системы на скорость vC ее центра масс: 1. Импульс p системы частиц равен произведению массы m системы на скорость vC ее центра масс: Доказательство:
2. Центр масс замкнутой системы частиц движется равномерно и прямолинейно (или покоится). 2. Центр масс замкнутой системы частиц движется равномерно и прямолинейно (или покоится). Доказательство: если система замкнута, то p = const, следовательно, из первого свойства следует, что vС = const.
3. Теорема о движении центра масс. Центр масс системы частиц движется как материальная точка, в которой заключена масса всей системы, и к которой приложена сила, равна сумме всех внешних сил: 3. Теорема о движении центра масс. Центр масс системы частиц движется как материальная точка, в которой заключена масса всей системы, и к которой приложена сила, равна сумме всех внешних сил: Здесь Fвнеш – сумма всех внешних сил, приложенных ко всем частицам системы.
Для описания движения иногда удобно использовать систему отсчета, в которой центр масс покоится. Для описания движения иногда удобно использовать систему отсчета, в которой центр масс покоится. Системой центра масс называется жестко связанная с центром масс система отсчета, которая движется поступательно по отношению к инерциальной системе отчета.
1. Импульс системы частиц в системе центра масс равен нулю: 1. Импульс системы частиц в системе центра масс равен нулю: Доказательство. Поскольку в системе центра масс скорость центра масс равна нулю, vC = 0, то в соответствии со вторым свойством центра масс, p = mvC = 0.
2. Если система состоит из двух частиц, то их импульсы p1 и p2 в системе центра масс равны по величине и противоположны по направлению: 2. Если система состоит из двух частиц, то их импульсы p1 и p2 в системе центра масс равны по величине и противоположны по направлению: Доказательство. Импульс системы частиц в системе центра масс равен нулю:
Уравнение движения тела с переменной массой было впервые получено русским механиком И.В. Мещерским (1859 – 1935), и носит его имя. Выведем его на примере движения ракеты. Уравнение движения тела с переменной массой было впервые получено русским механиком И.В. Мещерским (1859 – 1935), и носит его имя. Выведем его на примере движения ракеты. Принцип действия ракеты: ракета с большой скоростью выбрасывает вещество (газообразные продукты сгорания топлива), которое с силой воздействует на ракету и сообщает ей ускорение. Пусть на ракету действует внешняя сила F (это может быть сила тяготения, сила сопротивления среды, в которой движется ракета и т.д.)
Рассмотрим движение ракеты относительно неподвижной системы отсчета. Рассмотрим движение ракеты относительно неподвижной системы отсчета. Пусть в момент времени t m(t) – масса ракеты, v(t) – ее скорость, mv(t) – импульс ракеты. Спустя промежуток времени dt: масса и скорость ракеты получат приращения dm и dv, при этом dm < 0, т.к. масса ракеты уменьшается за счета сгорания топлива. Импульс ракеты станет равным (m + dm)(v + dv). Импульс образовавшихся за промежуток времени dt газов равен dmгvг, где dmг – масса газов, vг – скорость газов в неподвижной системе отсчета. Масса образовавшихся газов равна убыли массы ракеты: dmг = – dm.
Приращение импульсы системы «ракета - топливо» за промежуток времени dt: Приращение импульсы системы «ракета - топливо» за промежуток времени dt: Раскроем скобки и пренебрежем малой величиной dmdv, заменим dmг на –dm, тогда получим: Обозначим u = vг – v – относительная скорость истечения газов из ракеты; разделим обе части уравнения на dt
В этом уравнении масса является функцией времени: m = m(t). В этом уравнении масса является функцией времени: m = m(t). Слагаемое u(dm/dt) называется реактивной силой (сила, с которой действуют на ракету вытекающие из нее газы)
В качестве примера использования уравнения Мещерского применим его к движению ракеты, на которую внешние силы не действуют (F = 0): В качестве примера использования уравнения Мещерского применим его к движению ракеты, на которую внешние силы не действуют (F = 0): Пусть ракета движется прямолинейно. Учтем, что u v, тогда уравнение примет вид:
Для определения постоянной C рассмотрим начальные условия: m(t = 0) = m0 – начальная масса ракеты, когда ее скорость равна нулю: v(t = 0) = 0. Тогда C = m0. Формула Циолковского:
Формула Циолковского позволяет оценить относительный запас топлива, необходимый для сообщения ракете определенной скорости v. Формула Циолковского позволяет оценить относительный запас топлива, необходимый для сообщения ракете определенной скорости v. Пример. Допустим, ракете необходимо сообщить первую космическую скорость v 8 км/с. Если скорость газовой струи составляет u 1 км/с, то из уравнения Циолковского следует, что m0/m = e8 2980, т.е. необходимо, чтобы начальная масса ракеты была примерно в 3000 раз больше ее массы в тот момент, когда она достигнет необходимой скорости. Таким образом, практически вся масса ракеты приходится на топливо.