PPt4Web Хостинг презентаций

Главная / Физика / Тепловые машины. Внутренняя энергия – как её использовать?
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Тепловые машины. Внутренняя энергия – как её использовать?


Скачать эту презентацию

Презентация на тему: Тепловые машины. Внутренняя энергия – как её использовать?


Скачать эту презентацию



№ слайда 1 Тепловые машины Внутренняя энергия – как её использовать? Выполнила: Челях Марин
Описание слайда:

Тепловые машины Внутренняя энергия – как её использовать? Выполнила: Челях Марина, Учитель - Антикуз Е.В., УВК г.Курахово

№ слайда 2 Содержание: Принцип действия тепловых машин. Историческая справка. Тепловые двиг
Описание слайда:

Содержание: Принцип действия тепловых машин. Историческая справка. Тепловые двигатели: ДВС – двигатель внутреннего сгорания. Карбюраторный двигатель. Дизель. Паровые турбины. Газовые турбины. Турбореактивный двигатель. Ракетные двигатели. Коэффициент полезного действия тепловых машин. Сади Карно. КПД идеальной тепловой машины КПД тепловых двигателей Достоинства и недостатки тепловых двигателей. Как уменьшить загрязнение окружающей среды? Информационные материалы.

№ слайда 3 Принцип действия тепловых двигателей Тепловой двигатель – устройство преобразующ
Описание слайда:

Принцип действия тепловых двигателей Тепловой двигатель – устройство преобразующее внутреннюю энергию топлива в механическую энергию. Основные части теплового двигателя: нагреватель, рабочее тело и холодильник. Чтобы получить полезную работу, необходимо сделать работу сжатия газа меньше работы расширения. Для этого нужно, чтобы каждому объёму при сжатии соответствовало меньшее давление, чем при расширении. Поэтому газ перед сжатием должен быть охлажден. Графики процесса расширения и сжатия газа. АВ –расширение газа, СД – сжатие газа до первоначального объёма. Полезная работа численно равна SCDAB Схема тепловой машины Q1 – количество теплоты, полученное от нагревателя Q2 – количество теплоты, отданное холодильнику

№ слайда 4 Историческая справка Впервые практически действующие универсальные паровые машин
Описание слайда:

Историческая справка Впервые практически действующие универсальные паровые машины были созданы И.И. Ползуновым (1763 г) и Д. Уаттом (1764 г). Первый двигатель внутреннего сгорания был создан в 1860 г. французским инженером Э. Ленуаром. !862 г. – предложение Боде Роша использовать четырехтактный цикл. 1878 г. – построен первый четырехтактный газовый двигатель внутреннего сгорания. 1889 г. – первая паровая турбина, нашедшая практическое применение изготовлена шведским инженером Г. Лавалем. 1892 г. – создан двигатель Дизеля. 1944 г. – появились самолёты с винтом, насаженным на вал газотурбинного двигателя. Турбовинтовые двигатели имеют: Ил -18, Ан – 22, Ан – 124, «Руслан». 1933г. – создана отечественная жидкостная ракета «ГИРД-09» по проекту М, К. Тихонравова. 1957 г. – запуск первого в мире искусственного спутника Земли.

№ слайда 5 ДВС – устройство и принцип действия
Описание слайда:

ДВС – устройство и принцип действия

№ слайда 6 Дизель 1858 – 1913 Рудольф Дизель – выдающийся немецкий инженер-изобретатель. 18
Описание слайда:

Дизель 1858 – 1913 Рудольф Дизель – выдающийся немецкий инженер-изобретатель. 1898г.

№ слайда 7 Карбюраторный двигатель В 1880-х гг. О. С. Костович в России построил первый бен
Описание слайда:

Карбюраторный двигатель В 1880-х гг. О. С. Костович в России построил первый бензиновый карбюраторный двигатель. В таком двигателе смешивание топлива с воздухом происходит вне цилиндра, в специальном узле обогащения топлива воздухом (карбюраторе) Примером карбюраторного ДВС может служить двигатель ГАЗ-21 "Волга". Рабочий цикл двухтактного карбюраторного ДВС осуществляется за 2 хода. ВАЗ-2120 Надежда, двигатель бензиновый, карбюраторный. Квадроцикл "РЫСЬ" 2-х цилиндровый, 2-х тактный карбюраторный двигатель с водяным охлаждением.

№ слайда 8 Паровые турбины Первая паровая турбина, нашедшая практическое применение, была и
Описание слайда:

Паровые турбины Первая паровая турбина, нашедшая практическое применение, была изготовлена Г. Лавалем в 1889 г. Её мощность была меньше 4 кВт при частоте вращения 500 об/с. При создании паровой турбины Лаваль решил две проблемы: Внутренняя энергия пара в максимальной степени превращалась в кинетическую энергию струи, вырывающейся из сопла. Кинетическая энергия струи в максимальной степени передавалась лопаткам ротора турбины. К.П.Д. современных паровых турбин достигает 40%, поэтому электрические генераторы всех тепловых и атомных электростанций приводятся в действие паровыми турбинами. Паротурбинные двигатели нашли широкое применение на водном транспорте и в авиации.

№ слайда 9 Газовые турбины Разработка турбин внутреннего сгорания сдерживалась отсутствием
Описание слайда:

Газовые турбины Разработка турбин внутреннего сгорания сдерживалась отсутствием материалов, способных длительное время работать при высоких температурах и больших механических нагрузках. Цикл работы газовой турбины аналогичен циклу поршневого ДВС, но в турбине циклы происходят одновременно в разных участках. КПД газотурбинных установок достигает 25 -30%. Турбовинтовые двигатели имеют Ил-18, Ан-22, Ан-124, «Руслан». Транспортный самолёт Ан -124 «Руслан»

№ слайда 10 Турбореактивный двигатель Газовая турбина может быть использована как реактивный
Описание слайда:

Турбореактивный двигатель Газовая турбина может быть использована как реактивный двигатель. Её реактивная сила тяги может быть использована для движения самолёта, теплохода или железнодорожного состава. Основное отличие – газовая турбина используется только для приведения в действие воздушного компрессора. Турбореактивными двигателями оборудованы: Ил-62, Ту-154, Ил-86. Авиационный турбореактивный двигатель Д-36 предназначен для установки на самолеты Як-42, Ан-72, Ан-74 и экранопланы "Комета-2" и "Вихрь-2". Двигатель прошел стендовые испытания в 1971 г. С 1981 г. эксплуатируется в ГА

№ слайда 11 Ракетные двигатели Реактивные двигатели, не использующие для своей работы окружа
Описание слайда:

Ракетные двигатели Реактивные двигатели, не использующие для своей работы окружающую среду, называют ракетными двигателями. Выход струи газа через сопло приводит к возникновению реактивной силы. Мощность первой ступени ракеты-носителя «Восток» с ЖРД достигала 15 ГВт. В 1987 г. прошла успешные испытания универсальная ракета-носитель «Энергия», способная выводить на орбиту более 100 т полезного груза. Многоразовый ракетно-космический комплекс «Энергия-Буран»   Старт ракеты-носителя «Союз»

№ слайда 12 Коэффициент полезного действия тепловой машины Замкнутый процесс (цикл) – совоку
Описание слайда:

Коэффициент полезного действия тепловой машины Замкнутый процесс (цикл) – совокупность термодинамических процессов, в результате которых система возвращается в исходное состояние. В циклически действующей тепловой машине совершаемая работа равна: А = |Q1| – |Q2|. КПД тепловой машины – отношение работы, совершаемой двигателем за цикл, к количеству теплоты, полученному от нагревателя: ŋ =А/Q1. Коэффициент полезного действия тепловой машины всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПД как можно более высоким, т.е. использовать для получения работы как можно большую часть теплоты, заимствованной от нагревателя.

№ слайда 13 Сади Карно С. Карно – военный инженер. Работа Карно «Размышления о движущей силе
Описание слайда:

Сади Карно С. Карно – военный инженер. Работа Карно «Размышления о движущей силе огня». Работа Карно явилась началом термодинамики, а предложенный им общий метод решения задачи – термодинамическим методом, широко используемым в современной физике. Карно пришел к выводу, что к.п.д. идеальной тепловой машины не зависит от рабочего вещества, а определяется лишь температурой нагревателя и холодильника.

№ слайда 14 КПД идеальной тепловой машины Впервые наиболее совершенный циклический процесс,
Описание слайда:

КПД идеальной тепловой машины Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г. Цикл Карно – самый эффективный цикл, имеющий максимальный КПД. Для повышения КПД двигателя нужно повышать температуру нагревателя и понижать температуру холодильника.

№ слайда 15 КПД тепловых двигателей Карбюраторный двигатель внутреннего сгорания – 25-30% Ту
Описание слайда:

КПД тепловых двигателей Карбюраторный двигатель внутреннего сгорания – 25-30% Турбовинтовой двигатель самолёта – 30% Дизель трактора – 28-30% Дизель (стационарный) – 34-44% Паровая турбина на мощных электростанциях -40%

№ слайда 16 «Хорошо» и «плохо» тепловых двигателей
Описание слайда:

«Хорошо» и «плохо» тепловых двигателей

№ слайда 17 Как уменьшить загрязнение окружающей среды? Т.к. автомобильные двигатели играют
Описание слайда:

Как уменьшить загрязнение окружающей среды? Т.к. автомобильные двигатели играют решающую роль в загрязнении атмосферы в городах, то проблема их усовершенствования представляет одну из наиболее актуальных научно-технических задач. Один из путей уменьшения загрязнения окружающей среды – использование в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки и испытания автомобилей, в которых вместо бензиновых двигателей применяют электродвигатели, питающиеся от аккумуляторов, или двигатели, использующие в качестве топлива водород. Вопросы охраны окружающей среды очень важны для дальнейшего развития теплоэнергетики. При использовании твёрдого топлива возможно уменьшение выбросов - использовать скрубберы, в которых сера связывается известью или сжигание угля в кипящем слое.

№ слайда 18 Информационные материалы: Дягилев Ф.М. Из истории физики и жизни её творцов.- М.
Описание слайда:

Информационные материалы: Дягилев Ф.М. Из истории физики и жизни её творцов.- М.: Просвещение, 1986. Блудов М.И. Беседы по физике. ч.1.- М. Просвещение, 1972. Мощанский В.Н. История физики в средней школе.- М.: Просвещение,1981. Касьянов В.А. Физика 10.М.: Дрофа, 2000. Физика 10. Под редакцией Пинского А.А.- М.: Просвещение, 2001. Microsoft Office 2000: Использование Microsoft Office в школе. Учебно – методическое пособие для учителей. http://autoguide.ru/ > Испытания > Ваз Copyright © TEvg Page made 10.12.2001 1057 visits after 21.12.2002; average per day: 2.4 http://airbase.ru/alpha/rus/d/36/index.phtm Физика и астрономия: учебник для 8 класса под редакцией Пинского А.А., Разумовского В.Г. – М. – Просвещение, 1997.

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru