Фотоэффект и его законы. Работу выполнила: Сачек Дарья Сергеевна, Ученица 11 «А», МОУ «СОШ № 95 им. Н. Щукина, п. Архара, Амурской области»
Цель: Изучить явление фотоэффекта.
Задачи: 1. Изучить зависи­мости фототока от освещен­ности фотоэлемента 2.Снять вольт-амперную характеристику фотоэлемента. 3.Рассмотреть практическое применение фотоэффекта.
В начале 20 века в физике произошла величайшая революция, стало понятно, что законы классической физики неприменимы к явлениям микромира. Возникли мнения о двойственной природе света. В начале 20 века в физике произошла величайшая революция, стало понятно, что законы классической физики неприменимы к явлениям микромира. Возникли мнения о двойственной природе света.
Марк Планк предположил, что атомы испускают электромагнитную энергию отдельными порциями - квантами. Ученые всего мира проводили опыты по изучению световых явлений, и вот в 1887 году Герцем было открыто явление, которое было названо фотоэффектом. Марк Планк предположил, что атомы испускают электромагнитную энергию отдельными порциями - квантами. Ученые всего мира проводили опыты по изучению световых явлений, и вот в 1887 году Герцем было открыто явление, которое было названо фотоэффектом.
Фотоэффект – это испускание электронов телами под действием света.
Явление фотоэффекта было открыто в 1887 году Герцем. В 1888 году Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластины, приобретает положительный заряд. В этом же году Столетов создал первый фотоэлемент и применил его на практике. Явление фотоэффекта было открыто в 1887 году Герцем. В 1888 году Гальвакс показал, что при облучении ультрафиолетовым светом электрически нейтральной металлической пластины, приобретает положительный заряд. В этом же году Столетов создал первый фотоэлемент и применил его на практике.
ГЕРЦ Генрих Рудольф (1857-1894)
Немецкий физик, один из основоположников электродинамики. Экспериментально доказал существование электромагнитных волн и установил тождественность основных свойств электромагнитных и световых волн. Открыл внешний фотоэффект . Немецкий физик, один из основоположников электродинамики. Экспериментально доказал существование электромагнитных волн и установил тождественность основных свойств электромагнитных и световых волн. Открыл внешний фотоэффект .
СТОЛЕТОВ Александр Григорьевич (1839 - 1896)
Российский физик. Открыл первый закон фотоэффекта. Основал физическую лабораторию в Московском университете. Российский физик. Открыл первый закон фотоэффекта. Основал физическую лабораторию в Московском университете.
Практически удобнее фотоэффект наблюдать в металлах. В металле валентные электроны коллективизированы и образуют, своеобpазный "электронный газ", заполняющий кристаллическую pешетку, составленную из ионов. Но "электронный газ" в металле "заперт": вблизи поверхности металла на электроны воздействуют силы, не позволяющие им выходить наружу. Практически удобнее фотоэффект наблюдать в металлах. В металле валентные электроны коллективизированы и образуют, своеобpазный "электронный газ", заполняющий кристаллическую pешетку, составленную из ионов. Но "электронный газ" в металле "заперт": вблизи поверхности металла на электроны воздействуют силы, не позволяющие им выходить наружу.
Квантовая теория Эйнштейна позволила объяснить одну закономерность , установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента. Квантовая теория Эйнштейна позволила объяснить одну закономерность , установленную Столетевым. В 1888 Столетов заметил, что фототок появляется почти одновременно с освещением катода фотоэлемента.
ЭЙНШТЕЙН Альберт (1879-1955)
Физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН и иностранный почетный член АН СССР . Получил Нобелевскую премию в 1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта. Физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН и иностранный почетный член АН СССР . Получил Нобелевскую премию в 1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта.
По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется. По классической волновой теории электрону в поле световой электромагнитной волны требуется время для накопления необходимой для вылета энергии, и поэтому фотоэффект должен протекать с запаздыванием по крайне мере на несколько секунд. По квантовой теории же, когда фотон поглощается электроном, то вся энергия фотона переходит к электрону и никакого времени для накопления энергии не требуется.
Первый закон фотоэффекта. Количество электронов, вырываемых светом с поверхности металла за 1с, прямо пропорционально интенсивности света.
Второй закон фотоэффекта. Максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.
Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта, т. е. минимальная частота света v0(или максимальная длина волны y0), при которой ещё возможен фотоэффект, и если v<v0 , то фотоэффект уже не происходит.
Вывод: С увеличением разности потенциалов на фотоэлементе, увеличивается сила тока. Резкое увеличение происходит до 0,4 mA. Дальше график идет плавно, т.к фотоэлектроны перешли на положительный электрод.
Вольт-амперная характеристика фотоэлемента получена в результате поставленного опыта
Вывод: Что с увеличением разности потенциалов в электрической цепи при прямом подключении, сила тока возрастает до определенного значения, затем не изменяется, (данный участок графика соответствует току насыщения).
В обратном подключении сила тока изменяется значительно медленно до определенного значения, затем с увеличением разности потенциалов сила тока равна нулю (данная точка носит названия задерживающего напряжения). В обратном подключении сила тока изменяется значительно медленно до определенного значения, затем с увеличением разности потенциалов сила тока равна нулю (данная точка носит названия задерживающего напряжения).
Применение фотоэффекта. Вакуумные фотоэлементы. Полупроводниковые фотоэлементы. ФотоЭДС. Вентильные фотоэлементы.
Применение фотоэлектронных приборов позволило создать станки, которые без всякого участия человека изготавливают детали па заданным чертежам. Основанные на фотоэффекте приборы контролируют размеры изделий лучше любого человека, вовремя включают и выключают маяки и уличное освещение и тому подобное. Применение фотоэлектронных приборов позволило создать станки, которые без всякого участия человека изготавливают детали па заданным чертежам. Основанные на фотоэффекте приборы контролируют размеры изделий лучше любого человека, вовремя включают и выключают маяки и уличное освещение и тому подобное.
Вывод: 1.Открытие фотоэффекта имеет большое значение для более глубокого понимания природы света. Но ценность науки состоит не только в том, что она выясняет сложное и многообразное строение окружающего нас мира, но и в том, что она дает нам в руки средства, используя которые можно совершенствовать производство, улучшать условия материальной и культурной жизни общества.
2. Фотоэффект широко используется в технике. С помощью специальных приборов – фотоэлементов – энергия света управляет энергией электрического тока или превращается в неё. Фотоэлементы применяются в различных «видящих» автоматах. На явлении фотоэффекта основано устройство солнечных батарей. 2. Фотоэффект широко используется в технике. С помощью специальных приборов – фотоэлементов – энергия света управляет энергией электрического тока или превращается в неё. Фотоэлементы применяются в различных «видящих» автоматах. На явлении фотоэффекта основано устройство солнечных батарей.
Список литературы: Шпольский Э.В. Атомная физика. – М.: Изд-во физико-математической литературы, 1963. 575 с. Спроул Р. Современная физика. – М.: Наука, 1974. 390 с. Вихман Э. Квантовая физика. – М.: Наука, 1977. 415 с. Канарёв Ф.М. Начала физхимии микромира. – Краснодар, 2002. 320 с. (In Russian and in English).
Савельев И.В. Курс общей физики. – М.: Наука, 1998, т. 5, §2.2. Иродов И.Е. Квантовая физика. Основные законы. – М.: Лаборатория Базовых Знаний, 1999, §1.2. Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 1999, §36.1, §36.2.