1. Алгебраические методы решения Если исходить из определения неравенства, в котором в обеих частях записаны выражения с переменной, то при решении неравенств используют преобразования (возведение в четную или нечетную степень, логарифмирование, потенцирование), позволяющие привести неравенство к более простому виду. В процессе преобразований множество решений исходного неравенства либо не меняется, либо расширяется (можно получить посторонние решения), либо сужается (можно потерять решения). Поэтому важно знать, какие преобразования неравенства являются равносильными и при каких условиях.
№ слайда 3
Описание слайда:
1.1. Сведение неравенства к равносильной системе или совокупности систем