Математическая логика в школьном курсе математики
Правила пользования презентацией
Содержание Предисловие Что такое логика? - История изучения - Высказывания Алгебра логики - Действия над высказываниями - Приоритет выполнения операций - Законы алгебры логики Примеры решения задач Предикаты Заключение
Предисловие В повседневной жизни мы часто сталкиваемся с ситуациями, когда не знаем, как прийти к выводу из предпосылок и получить истинное знание о предмете размышления. Логика служит одним из инструментов почти любой науки. Пример тому школьный курс математики.
Предмет логики Логика (др.-греч. «λογική» — «искусство рассуждения») — наука, изучающая законы и формы мышления.
История
Высказывания
Алгебра высказываний
Приоритет выполнения операций
Законы математической логики Коммутативность
Законы алгебры логики 1. А = А 2. А ν А = А 3. А ∧ А = А 4. А ν А = I 5. A ν (A ν A) = I
Отрицание
Дизъюнкция
импликация
конъюнкция
эквиваленция
Строгая дизъюнкция
Разгадали? Давайте проверим Пусть А≡{Капитан присутствует на судне}, В≡{С судна выгружают груз}, С≡{Рулевой присутствует на судне}, тогда (В → А) и (B→ (A→C)) – истинные высказывания. Конъюнкция истинных высказываний истинна, т.е. (B→A)∧(B→ (A→C))=(BvA)(B→(AvС))= (BvA)(Bv (AvС))= BvA(AvС)= BvLvAC= BvAC= B→AC. Проанализировав полученное, выяснили, что рулевой присутствует на судне, если с судна не выгружают груз. Ответ: рулевой присутствует на судне, если с судна не выгружают груз.
Предикаты
Для предикатов характерны те же действия, что и для высказываний, а именно: Для предикатов характерны те же действия, что и для высказываний, а именно: Конъюнкция Дизъюнкция Импликация Эквиваленция и др.
Кванторы Одним из способов получения высказываний из предикатов является навешивание кванторов. Для этого перед предикатом пишут кванторы – слова, описывающие его множество истинности.
квантор существования « ∃» Квантор существования — это символ, обозначающий единственное существование и читается как «существует» или «для некоторого».
квантор всеобщности «∀» Квантор всеобщности — это символ, обозначающий всеобщность и читается как «для любого» или «для всех».
Заключение
Использованная литература Шабунин М.И. Математика. Алгебра. Начала анализа. http://ru.wikipedia.org
Работу выполнили Работу выполнили Ученицы 11 А класса: Баженова Наталья Луценко Ксения Масленникова Людмила Саяпина Юлия