PPt4Web Хостинг презентаций

Главная / Геометрия / Фигура пирамида
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Фигура пирамида


Скачать эту презентацию

Презентация на тему: Фигура пирамида


Скачать эту презентацию



№ слайда 1 900igr.net
Описание слайда:

900igr.net

№ слайда 2 Содержание 1 История развития геометрии пирамиды 2 Элементы пирамиды 3 Развёртка
Описание слайда:

Содержание 1 История развития геометрии пирамиды 2 Элементы пирамиды 3 Развёртка пирамиды 4Свойства пирамиды 5Теоремы, связывающие пирамиду с другими геометрическими телами 6.1 Сфера 6.2 Конус 6.3 Цилиндр 6Формулы, связанные с пирамидой 7Особые случаи пирамиды 8.1 Правильная пирамида 8.2 Прямоугольная пирамида 8.3 Усечённая пирамида 8 Связанные определения 9 Интересные факты

№ слайда 3 Что такое пирамида?
Описание слайда:

Что такое пирамида?

№ слайда 4 Виды пирамид
Описание слайда:

Виды пирамид

№ слайда 5 История развития геометрии пирамиды Начало геометрии пирамиды было положено в Др
Описание слайда:

История развития геометрии пирамиды Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды был Демокрит [2], а доказал Евдокс Книдский. Древнегреческий математик Евклид, систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.

№ слайда 6 Элементы пирамиды апофема — высота боковой грани правильной пирамиды [3]; боковы
Описание слайда:

Элементы пирамиды апофема — высота боковой грани правильной пирамиды [3]; боковые грани — треугольники, сходящиеся в вершине пирамиды; боковые ребра — общие стороны боковых граней; вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания; высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра); диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания; основание — многоугольник, которому не принадлежит вершина пирамиды

№ слайда 7
Описание слайда:

№ слайда 8 Свойства пирамиды Все диагонали пирамиды принадлежат её граням. Если все боковые
Описание слайда:

Свойства пирамиды Все диагонали пирамиды принадлежат её граням. Если все боковые ребра равны, то: около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр; боковые ребра образуют с плоскостью основания равные углы. Если боковые грани наклонены к плоскости основания под одним углом, то: в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр; высоты боковых граней равны; площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани

№ слайда 9
Описание слайда:

№ слайда 10 Развертка пирамиды Развёрткой многогранной поверхности называется плоская фигура
Описание слайда:

Развертка пирамиды Развёрткой многогранной поверхности называется плоская фигура, получаемая последовательным совмещением всех граней поверхности с плоскостью. Так как все грани многогранной поверхности изображаются на развёртке в натуральную величину, построение её сводится к определению величины отдельных граней поверхности — плоских многоугольников. Существует три способа построения развёртки многогранных поверхностей: Способ нормального сечения; Способ раскатки; Способ треугольника. При построении развёртки пирамида применяется способ треугольника. Развёртка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников — граней пирамиды и многоугольника — основания. Поэтому построение развёртки пирамиды сводится к определению натуральной величины основания и граней пирамиды. Грани пирамиды можно построить по трём сторонам треугольников, их образующих. Для этого необходимо знать натуральную величину рёбер и сторон основания. Определение истинной величины основания и рёбер пирамиды

№ слайда 11 Алгоритм построения Определяют натуральную величину основания пирамиды (например
Описание слайда:

Алгоритм построения Определяют натуральную величину основания пирамиды (например методом замены плоскостей проекций); Определяют истинную величину всех рёбер пирамиды любым из известных способов (в данном примере натуральная величина всех рёбер пирамиды определена методом вращения вокруг оси перпендикулярной горизонтальной плоскости проекций и проходящей через вершину пирамиды S); Строят основание пирамиды и по найденным трём сторонам строят какую-либо из боковых граней, пристраивая к ней следующие. Точки, расположенные внутри контура развёртки, находят во взаимно однозначном соответствии с точками поверхности многогранника. Но каждой точке тех рёбер, по которым многогранник разрезан, на развёртке соответствуют две точки, принадлежащие контуру развёрт

№ слайда 12
Описание слайда:

№ слайда 13 Сфера около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит
Описание слайда:

Сфера около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит вписанный многоугольник (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Как следствие из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу; в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

№ слайда 14 Конус Конус называется вписанным в пирамиду, если вершины их совпадают, а его ос
Описание слайда:

Конус Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие); Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые ребра пирамиды равны между собой (необходимое и достаточное условие); Высоты у таких конусов и пирамид равны между собой.

№ слайда 15 Цилиндр Цилиндр называется вписанным в пирамиду, если вершина пирамиды принадлеж
Описание слайда:

Цилиндр Цилиндр называется вписанным в пирамиду, если вершина пирамиды принадлежит его одному основанию, а другое его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию. Причём вписать цилиндр в пирамиду можно только тогда, когда в основании пирамиды — описанный многоугольник (необходимое и достаточное условие); Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания цилиндра. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

№ слайда 16 Формулы, связанные с пирамидой Объём пирамиды может быть вычислен по формуле: гд
Описание слайда:

Формулы, связанные с пирамидой Объём пирамиды может быть вычислен по формуле: где S — площадь основания и h — высота; Боковая поверхность — это сумма площадей боковых граней: Полная поверхность — это сумма боковой поверхности и площади основания: Sp = Sb + So Для нахождения боковой поверхности в правильной пирамиде можно использовать формулы: где a — апофема боковой грани, P — периметр основания, n — число сторон основания, b — боковое ребро, α — плоский угол при вершине пирамиды

№ слайда 17 Особые случаи пирамиды Правильная пирамида Пирамида называется правильной, если
Описание слайда:

Особые случаи пирамиды Правильная пирамида Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами: боковые ребра правильной пирамиды равны; в правильной пирамиде все боковые грани — равные равнобедренные треугольники; в любую правильную пирамиду можно как вписать, так и описать около неё сферу; если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно , где n — количество сторон многоугольника основания[6]; площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

№ слайда 18 Прямоугольная пирамида Пирамида называется прямоугольной, если одно из боковых р
Описание слайда:

Прямоугольная пирамида Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

№ слайда 19 Усечённая пирамида Усечённой пирамидой называется многогранник, заключённый межд
Описание слайда:

Усечённая пирамида Усечённой пирамидой называется многогранник, заключённый между пирамидой и секущей плоскостью, параллельной её основанию.

№ слайда 20 Связанные определения Тетраэдром называется треугольная пирамида. В тетраэдре лю
Описание слайда:

Связанные определения Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существуют большое различие в понятиях правильная треугольная пирамида и правильный тетраэдр.

№ слайда 21 Интересные факты Интересные факты Формула для расчёта объёма усечённой пирамиды
Описание слайда:

Интересные факты Интересные факты Формула для расчёта объёма усечённой пирамиды была выведена раньше чем для полной.

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru