PPt4Web Хостинг презентаций

Главная / Физика / Волновая оптика
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Волновая оптика


Скачать эту презентацию

Презентация на тему: Волновая оптика


Скачать эту презентацию



№ слайда 1 Тема: Волновая оптика. 900igr.net
Описание слайда:

Тема: Волновая оптика. 900igr.net

№ слайда 2 В СЛОВЕ «СВЕТ» ЗАКЛЮЧЕНА ВСЯ ФИЗИКА С. И. ВАВИЛОВ
Описание слайда:

В СЛОВЕ «СВЕТ» ЗАКЛЮЧЕНА ВСЯ ФИЗИКА С. И. ВАВИЛОВ

№ слайда 3 Объект исследования: Свет Предмет исследования: Волновые свойства света
Описание слайда:

Объект исследования: Свет Предмет исследования: Волновые свойства света

№ слайда 4
Описание слайда:

№ слайда 5 Гипотеза: СВЕТ Волна Поток частиц
Описание слайда:

Гипотеза: СВЕТ Волна Поток частиц

№ слайда 6 Линзы Собирающие линзы (а,б) Рассеивающие линзы (в,г)
Описание слайда:

Линзы Собирающие линзы (а,б) Рассеивающие линзы (в,г)

№ слайда 7 Геометрическая оптика Раздел оптики, в котором изучаются законы распространения
Описание слайда:

Геометрическая оптика Раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче.

№ слайда 8 Ремер Оле (1644-1710), датский астроном. По наблюдениям спутников Юпитера впервы
Описание слайда:

Ремер Оле (1644-1710), датский астроном. По наблюдениям спутников Юпитера впервые определил скорость света (1675). Изобрел несколько инструментов, в т. ч. меридианный круг и пассажный инструмент.

№ слайда 9 Астрономический метод измерения скорости света
Описание слайда:

Астрономический метод измерения скорости света

№ слайда 10 ФИЗО Арман Ипполит Луи (1819-1896), французский физик. Первым измерил (1849) ско
Описание слайда:

ФИЗО Арман Ипполит Луи (1819-1896), французский физик. Первым измерил (1849) скорость света земного источника. Определил (1851) скорость света в движущейся жидкости и показал, что свет частично увлекается движущейся средой.

№ слайда 11 Лабораторный метод измерения скорости света
Описание слайда:

Лабораторный метод измерения скорости света

№ слайда 12 Гюйгенс Христиан (1629—1695) — голландский физик и математик, создатель первой в
Описание слайда:

Гюйгенс Христиан (1629—1695) — голландский физик и математик, создатель первой волновой теории света. Основы этой теории Гюйгенс изложил в «Трактате о свете» (1690). Гюйгенс впервые использовал маятник для достижения регулярного хода часов и вывел формулу для периода колебаний математического и физического маятников. Математические работы Гюйгенса касались исследования конических сечений, циклоиды и других кривых. Ему принадлежит одна из первых работ по теории вероятности. С помощью усовершенствованной им астрономической трубы Гюйгенс открыл спутник Сатурна Титан.

№ слайда 13 Принцип Гюйгенса. Каждая точка среды, до которой дошло возмущение, сама становит
Описание слайда:

Принцип Гюйгенса. Каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн.

№ слайда 14 Исаак Ньютон. (4.01.1643, Вулсторп, около Граптема, – 31.03.1727, Кенсингтон) Нь
Описание слайда:

Исаак Ньютон. (4.01.1643, Вулсторп, около Граптема, – 31.03.1727, Кенсингтон) Ньютон родился в семье фермера; отец умер незадолго до рождения сына. В 12 лет Исаак начал учиться в Грантемской школе, в 1661 поступил в Тринити-колледж Кембриджского университета в качестве субсайзера (так назывались бедные студенты, выполнявшие для заработка обязанности слуг в колледже), где его учителем был известный математик И. Барроу. Окончив университет, Ньютон в 1665 получил ученую степень бакалавра. В 1665–67, во время эпидемии чумы, находился в своей родной деревне Вулсторп; эти годы были наиболее продуктивными в научном творчестве Ньютона. Здесь у него сложились в основном те идеи, которые привели его к созданию дифференциального и интегрального исчислений, к изобретению зеркального телескопа (собственноручно изготовленного им в 1668), открытию закона всемирного тяготения; здесь он провел опыты над разложением света. В 1668 Ньютону была присвоена степень магистра, а в 1669 Барроу передал ему почетную люкасовскую физико-математическую кафедру, которую Ньютон занимал до 1701. В 1687 он опубликовал свой грандиозный труд «Математические начала натуральной философии» (кратко – «Начала»). В 1695 получил должность смотрителя Монетного двора (этому, очевидно, способствовало то, что Ньютон изучал свойства металлов). Ему было поручено руководство перечеканкой всей английской монеты. Ему удалось привести в порядок расстроенное монетное дело Англии, за что он получил в 1699 пожизненное высокооплачиваемое звание директора Монетного двора. В том же году Ньютон избран иностранным членом Парижской АН. В 1703 он стал президентом Лондонского королевского общества. В 1705 за научные труды он возведен в дворянское достоинство. Похоронен Ньютон в английском национальном пантеоне – Вестминстерском аббатстве.

№ слайда 15 Работа по оптике. Еще в 60-е гг. XVII в. Ньютон заинтересовался оптикой и сделал
Описание слайда:

Работа по оптике. Еще в 60-е гг. XVII в. Ньютон заинтересовался оптикой и сделал открытие, которое, как казалось сначала, говорило в пользу корпускулярной теории света. Этим открытием было явление дисперсии света и простых цветов. В экране, на котором наблюдался спектр, делалось также малое отверстие. Через отверстие пропускали уже не белый свет, а свет, имеющий определенную окраску, говоря современным языком, монохроматический пучок света. На пути этого пучка Ньютон ставил новую призму, а за ней новый экран. Что будет наблюдаться на этом экране? Разложит он одноцветный пучок света в новый спектр или нет? Опыт показан, что этот пучок света отклоняется призмой как одно целое, под определенным углом. При этом свет не изменяет своей окраски. Поворачивал первую призму, Ньютон пропускал через отверстие экрана цветные лучи различных участков спектра. Во всех случаях они не разлагались второй призмой, а лишь отклонялись на определенный угол, разный для лучей различного цвета. В экране, на котором наблюдался спектр, делалось также малое отверстие. Через отверстие пропускали уже не белый свет, а свет, имеющий определенную окраску, говоря современным языком, монохроматический пучок света. На пути этого пучка Ньютон ставил новую призму, а за ней новый экран. Что будет наблюдаться на этом экране? Разложит он одноцветный пучок света в новый спектр или нет? Опыт показан, что зтот пучок света отклоняется призмой как одно целое, под определенным углом. При этом свет не изменяет своей окраски. Поворачивал первую призму, Ньютон пропускал через отверстие экрана цветные лучи различных участков спектра. Во всех случаях они не разлагались второй призмой, а лишь отклонялись на определенный угол, разный для лучей различного цвета. После этого Ньютон пришел к заключению, что белый свет разлагается на цветные лучи, которые являются простыми и призмой не разлагаются. Для каждого цвета показатель преломления имеет свое, определенное значение. Цветность этих лучей и их преломляемость не может измениться “ни преломлением, ни отражением от естественных тел, или какой-либо иной причиной”,– писал Ньютон.

№ слайда 16 Дисперсия.
Описание слайда:

Дисперсия.

№ слайда 17
Описание слайда:

№ слайда 18 Интерференция. Горит, как хвост павлиний, Каких цветов в нем нет! Лиловый, красн
Описание слайда:

Интерференция. Горит, как хвост павлиний, Каких цветов в нем нет! Лиловый, красный, синий, Зеленый, желтый цвет. С.Я.Маршак.

№ слайда 19 Кольца Ньютона. Кольца Ньютона являются исторически первым примером наблюдения и
Описание слайда:

Кольца Ньютона. Кольца Ньютона являются исторически первым примером наблюдения интерференционной картины полос равной толщины. Геометрия наблюдения этих колец чрезвычайно проста. На плоской стеклянной поверхности лежит плоско-выпуклая стеклянная линза небольшой кривизны (обычно берут линзу с фокусным расстоянием порядка метра). Система освещается параллельным пучком естест венного или монохроматического света сверху, со стороны линзы. Вблизи оптической оси системы (то есть точки касания линзы и стеклянной подложки) разность хода лучей, отраженных от подложки и выпуклой поверхности линзы, невелика и медленно изменяется по квадратичному закону с ростом расстояния до оси системы R: где R0 - радиус кривизны линзы, порядка метра; l - длина волны света; d - малый зазор между линзой и подложкой. В случае когда d=2pm, то есть разность хода обеих отраженных волн кратна длине волны, - обе волны складываются синфазно, то есть дают в отраженном свете интерференционный максимум. Это соответствует условию:  

№ слайда 20 Таким образом интерференционные максимумы имеют вид концентрических колец с цент
Описание слайда:

Таким образом интерференционные максимумы имеют вид концентрических колец с центром в ночке касания линзы и подложки. Оценки для десяти метрового радиуса кривизны линзы и зеленого света дают R1»3 мм. Таким образом, кольца Ньютона легко наблюдаются невооруженным глазом. В случае когда падающее излучение - естественный свет, для разных его длин волн положение интерференционных максимумов различно, и в пределах первых трех - четырех интерференционных порядков  m, наблюдаются системы вложенных окрашенных колец. Такие кольца и называются кольцами Ньютона, первым их наблюдавшего.

№ слайда 21 Использование интерференции: Явление интерференции света находит широкое примене
Описание слайда:

Использование интерференции: Явление интерференции света находит широкое применение в современной технике. Одним из таких применений является создание "просветленной" оптики. Отполированная поверхность стекла отражает примерно 4% падающего на нее света. Современные оптические приборы состоят из большого числа деталей, изготовленных из стекла. Проходя через каждую из этих деталей, свет ослабляется на 4%. Общие потери света в объективе фотоаппарата составляют примерно 25%, в призменном бинокле и микроскопе — 50% и т. д. Другим применением явления интерференции является получение хорошо отражающих покрытий, необходимых во многих отраслях оптики. И. с. широко используется при спектральном анализе для точного измерения расстояний и углов, в рефрактометрии, в задачах контроля качества поверхностей, для создания светофильтров, зеркал, просветляющих покрытий и др.

№ слайда 22 Просветление оптики. Просветление оптики основано на интерференции. На поверхнос
Описание слайда:

Просветление оптики. Просветление оптики основано на интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления nп, меньшим показателя преломления стекла nс.

№ слайда 23 Дифракция. Огибание волнами краев препятствий. Дифракция присуща любому волновом
Описание слайда:

Дифракция. Огибание волнами краев препятствий. Дифракция присуща любому волновому движению.

№ слайда 24 Юнг Томас и его опыт
Описание слайда:

Юнг Томас и его опыт

№ слайда 25 Юнг Томас (1773-1829) Английский ученый с необыкновенной широтой научных интерес
Описание слайда:

Юнг Томас (1773-1829) Английский ученый с необыкновенной широтой научных интересов и многогранностью дарований. Юнг одновременно известный врач и физик с огромной интуицией, астроном и механик, металлург и египтолог, физиолог и полиглот, талантливый музыкант и даже способный гимнаст. Главными заслугами Юнга является открытие интервенции света (термин «интервенция» принадлежит Юнгу) и объяснение явления дифракции на основе волновой теории. Юнг первым измерил длину световой волны.

№ слайда 26 Опыт Юнга:
Описание слайда:

Опыт Юнга:

№ слайда 27 Дифракционная решетка Представляет собой совокупность большого числа очень узких
Описание слайда:

Дифракционная решетка Представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

№ слайда 28 Лабораторная работа № 3 «Измерение длины световой волны с помощью дифракционной
Описание слайда:

Лабораторная работа № 3 «Измерение длины световой волны с помощью дифракционной решётки» Оборудование: Дифракционная решётка, чёрный экран с узкой вертикальной щелью, штатив с лапкой. Ход работы: Максимум света Решётка Экран b Цвет Постоянные величины Значение λ, м k d, а, слева справа фиолетовый 1 зелёный красный

№ слайда 29 Проблемный вопрос: Свет – поперечная волна?
Описание слайда:

Проблемный вопрос: Свет – поперечная волна?

№ слайда 30 Поляризация света.
Описание слайда:

Поляризация света.

№ слайда 31 Вывод: Свет – это электромагнитная волна.
Описание слайда:

Вывод: Свет – это электромагнитная волна.

№ слайда 32 Джеймс Клерк Максвелл (1831-79) Создатель классической электродинамики, один из
Описание слайда:

Джеймс Клерк Максвелл (1831-79) Создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор Кавендишской лаборатории; создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла — Кремоны), термодинамике, истории физики и др.

№ слайда 33 Таблица самооценки № 1 вариант 2 вариант 1 Б В 2 А Б 3 В Г 4 Б Б 5 А В 6 А Д 7 А
Описание слайда:

Таблица самооценки № 1 вариант 2 вариант 1 Б В 2 А Б 3 В Г 4 Б Б 5 А В 6 А Д 7 А,Б,В Г,Д

№ слайда 34 Структурная схема по теме «Волновая оптика» α- угол падения β – угол преломления
Описание слайда:

Структурная схема по теме «Волновая оптика» α- угол падения β – угол преломления γ – угол отражения Явление Научные факты Гипотеза Величины Законы Применение Распространение света 1.Образование за предметами резких теней и размытых полутеней. 2.Явление интерференции 3.Явление дифракции 4.Явление поляризации Свет–это волна. Свет–это поток частиц. n- показатель преломления с–скорость света 1.Прямолинейного распространения света. 2.Закон отражения 3.Закон преломления Линзы. Фотоаппарат Очки Бинокль Проекционный аппарат Глаз Интерферометры Дифракционные решётки Просветлённая оптика

№ слайда 35 Глоссарий Понятие Значение геометрическая оптика раздел оптики, в котором изучаю
Описание слайда:

Глоссарий Понятие Значение геометрическая оптика раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Принцип Гюйгенса Каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн. Интерференция это сложение двух волн, вследствие которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Дифракция это огибание волнами краёв препятствий. Дифракция присуща любому волновому движению Дифракционная решётка представляет собой совокупность большого числа очень узких щелей, разделённых непрозрачными промежутками. Луч Это линия вдоль которой распространяется свет Скорость света Максимально возможная скорость в природе, скорость распространения электромагнитной волны, постоянная величина.

№ слайда 36 Свет – это величайшая ценность, которой одарила нас природа, это необходимое усл
Описание слайда:

Свет – это величайшая ценность, которой одарила нас природа, это необходимое условие существования растений, животных, и человека. Б.Ф. Билимович

Скачать эту презентацию


Презентации по предмету
Презентации из категории
Лучшее на fresher.ru