PPt4Web Хостинг презентаций

Главная / Физика / Ультразвук
X Код для использования на сайте:

Скопируйте этот код и вставьте его на свой сайт

X

Чтобы скачать данную презентацию, порекомендуйте, пожалуйста, её своим друзьям в любой соц. сети.

После чего скачивание начнётся автоматически!

Кнопки:

Презентация на тему: Ультразвук


Скачать эту презентацию

Презентация на тему: Ультразвук


Скачать эту презентацию

№ слайда 1 Звук Шелест листьев Рёв мотора Речь актёра Что их объединяет ? Чем они отличаютс
Описание слайда:

Звук Шелест листьев Рёв мотора Речь актёра Что их объединяет ? Чем они отличаются? 900igr.net

№ слайда 2 в КАКИХ СРЕДАХ ЗВУК РАСПРОСТРАНЯЕТСЯ ? Почему возникает эхо ? ОТЧЕГО ЗАВИСИТ СКО
Описание слайда:

в КАКИХ СРЕДАХ ЗВУК РАСПРОСТРАНЯЕТСЯ ? Почему возникает эхо ? ОТЧЕГО ЗАВИСИТ СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЗВУКА ?

№ слайда 3 Могут ли быть колебания меньше 20 Гц ? Физик Вуд построил трубу которая создавал
Описание слайда:

Могут ли быть колебания меньше 20 Гц ? Физик Вуд построил трубу которая создавала колебания менее 20 Гц. Такие же колебания возникают при штормах в океанах. Как человек реагирует на такие колебания ? Это инфразвук !

№ слайда 4 Возникнут колебания частотой более 2000 Гц ?
Описание слайда:

Возникнут колебания частотой более 2000 Гц ?

№ слайда 5 УЛЬТРАЗВУК Содержание - Источники ультразвука - Свисток Гальтона - Жидкостный ул
Описание слайда:

УЛЬТРАЗВУК Содержание - Источники ультразвука - Свисток Гальтона - Жидкостный ультразвуковой свисток - Сирена - Ультразвук в природе - Применение ультразвука - Резка металла с помощью ультразвука - Приготовление смесей с помощью ультразвука - Применение ультразвука в биологии - Применение ультразвука для очистки - Применение ультразвука для очистки корнеплодов - Применение ультразвука в эхолокации - Применение ультразвука в расходометрии - Распространение ультразвука - Скорость распространения ультразвуковых волн - Дифракция, интерференция - Глубина проникновения ультразвуковых волн - Рассеяние ультразвуковых волн - Преломление ультразвуковых волн - Бегущие и стоячие ультразвуковые волны

№ слайда 6 Источники ультразвука Частота сверхвысокочастотных ультразвуковых волн, применяе
Описание слайда:

Источники ультразвука Частота сверхвысокочастотных ультразвуковых волн, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Фокусировка таких пучков обычно осуществляется с помощью специальных звуковых линз и зеркал. Ультразвуковой пучок с необходимыми параметрами можно получить с помощью соответствующего преобразователя. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

№ слайда 7 Свисток Гальтона Первый ультразвуковой свисток сделал в 1883 году англичанин Гал
Описание слайда:

Свисток Гальтона Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак.

№ слайда 8 Жидкостный ультразвуковой свисток Большинство ультразвуковых свистков можно прис
Описание слайда:

Жидкостный ультразвуковой свисток Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую.

№ слайда 9 Сирена Другая разновидность механических источников ультразвука — сирена. Она об
Описание слайда:

Сирена Другая разновидность механических источников ультразвука — сирена. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все сирены состоят из камеры, в которой сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске — роторе. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают..

№ слайда 10 Ультразвук в природе
Описание слайда:

Ультразвук в природе

№ слайда 11 Ультразвук в природе Летучие мыши, использующие при ночном ориентировании эхолок
Описание слайда:

Ультразвук в природе Летучие мыши, использующие при ночном ориентировании эхолокацию, испускают при этом ртом или имеющим форму параболического зеркала носовым отверстием сигналы чрезвычайно высокой интенсивности. Летучие мыши могут обходить при полете препятствия . Механизм этой высокой помехоустойчивости еще неизвестен.

№ слайда 12 Ультразвук в природе При локализации летучими мышами предметов, решающую роль иг
Описание слайда:

Ультразвук в природе При локализации летучими мышами предметов, решающую роль играют сдвиг во времени и разница в интенсивности между испускаемым и отраженным сигналами. Подковоносы могут ориентироваться и с помощью только одного уха .они могут определить скорость собственного перемещения.

№ слайда 13 Ультразвук в природе У ночных бабочек из семейства медведиц развился генератор у
Описание слайда:

Ультразвук в природе У ночных бабочек из семейства медведиц развился генератор ультразвуковых помех, «сбивающий со следа» летучих мышей, преследующих этих насекомых. Не менее умелые навигаторы — жирные козодои, или гуахаро. Они издают негромкие щёлкающие звуки, свободно улавливаемые и человеческим ухом (их частота примерно 7 000 Герц). Каждый щелчок длится одну-две миллисекунды. Звук щелчка отражается от стен подземелья, разных выступов и препятствий и воспринимается чуткой птицей.

№ слайда 14 Применение ультразвука
Описание слайда:

Применение ультразвука

№ слайда 15 Резка металла с помощью ультразвука На обычных металлорежущих станках нельзя про
Описание слайда:

Резка металла с помощью ультразвука На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах.

№ слайда 16 Приготовление смесей с помощью ультразвука Широко применяется ультразвук для при
Описание слайда:

Приготовление смесей с помощью ультразвука Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

№ слайда 17 Применение ультразвука в биологии Способность ультразвука разрывать оболочки кле
Описание слайда:

Применение ультразвука в биологии Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется для разрушения внутриклеточных структур. применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

№ слайда 18 Применение ультразвука для очистки В лабораториях и на производстве применяются
Описание слайда:

Применение ультразвука для очистки В лабораториях и на производстве применяются ультразвуковые ванны для очистки лабораторной посуды и деталей от мелких частиц. В ювелирной промышленности ювелирные изделия очищают от мелких частиц полировальной пасты в ультразвуковых ваннах. В некоторых стиральных машинах применяют ультразвук для стирки белья. В некоторых пищевых производствах применяют ультразвуковые ванны для очистки корнеплодов (картофеля, моркови, свеклы и др.) от частиц земли. В рыбной промышленности применяют ультразвуковую эхолокацию для обнаружения косяков рыб. Ультразвуковые волны отражаются от косяков рыб и приходят в приёмник ультразвука раньше, чем ультразвуковая волна, отразившаяся от дна.

№ слайда 19 Применение ультразвука в расходометрии Для контроля расхода и учета воды и тепло
Описание слайда:

Применение ультразвука в расходометрии Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры. Неоспоримые достоинства ультразвуковых расходомеров: надежность высокая точность, быстродействие, помехозащищенность – определили их широкое распространение.

№ слайда 20 Распространение ультразвука – это процесс перемещения в пространстве и во времен
Описание слайда:

Распространение ультразвука – это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне. Звуковая волна – продольная волна. Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия.

№ слайда 21 Ультразвуковые волны в тканях организма распространяются с некоторой конечной ск
Описание слайда:

Ультразвуковые волны в тканях организма распространяются с некоторой конечной скоростью, которая определяется упругими свойствами среды и ее плотностью. Скорость звука в жидкостях и твердых средах значительно выше, чем в воздухе, где она приблизительно равна 330 м/с. Для воды она будет равна 1482 м/с при 20о С. Скорость распространения ультразвука в твердых средах, например, в костной ткани, составляет примерно 4000 м/с. Скорость распространения ультразвуковых волн

№ слайда 22 Дифракция, интерференция При распространении ультразвуковых волн возможны явлени
Описание слайда:

Дифракция, интерференция При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения. Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. При одновременном движении в ткани нескольких ультразвуковых волн в определенной точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции.

№ слайда 23 Дифракция, интерференция Если ультразвуковые волны достигают определенного участ
Описание слайда:

Дифракция, интерференция Если ультразвуковые волны достигают определенного участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

№ слайда 24 Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука
Описание слайда:

Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука понимают глубину при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

№ слайда 25 Рассеяние ультразвуковых волн Если в среде имеются неоднородности, то происходит
Описание слайда:

Рассеяние ультразвуковых волн Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и в конечном счете также вызвать затухание волны в первоначальном направлении распространения.

№ слайда 26 Преломление ультразвуковых волн Так как акустическое сопротивление мягких тканей
Описание слайда:

Преломление ультразвуковых волн Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис - дерма - фасция - мышца) будет наблюдаться преломление ультразвуковых лучей.

№ слайда 27 Работу выполняли: Марченко Александра и Городкова Анастасия Преподаватель физики
Описание слайда:

Работу выполняли: Марченко Александра и Городкова Анастасия Преподаватель физики: Зенкина Зинаида Ивановна

Скачать эту презентацию

Презентации по предмету
Презентации из категории
Лучшее на fresher.ru