Фотоэффект – это явление вырывания электронов из вещества под действием света. 900igr.net
Из истории фотоэффекта… 1887 год – немецкий физик Генрих Герц
Второе открытие фотоэффекта 1888 год – немецкий ученый Вильгельм Гальвакс.
Третье открытие фотоэффекта 1888 год – итальянец Аугусто Риги. Он же придумал первый фотоэлемент – прибор, преобразующий энергию света в электрический ток.
Четвертое и окончательное открытие… 1888 год – русский ученый Александр Григорьевич Столетов. Он подверг фотоэффект тщательному эксперимен- тальному исследованию и установил законы фотоэффекта.
Схема установки Столетова 1-й вариант опыта ! V
Схема установки Столетова 1-й вариант опыта ! V
Вывод, который сделал вывод Столетов… …при освещении цинковой пластины ультрафиолетовыми лучами из неё вырываются электроны. Под действием ЭП они устремляются к сетке и в цепи возникает электрический ток, который называют фототоком.
Задачи, которые ставил перед собой Столетов… 1.Нужно было установить, от чего зависит количество электронов, вырываемых из металла, за 1 с? 2.От чего зависит скорость фотоэлектронов, а значит, и кинетическая энергия фотоэлектронов?
Схема установки, на которой Столетов установил законы фотоэффекта
Первый закон фотоэффекта Сила тока насыщения (фактически, число выбиваемых с поверхности электронов за единицу времени) прямо пропорциональна интенсивности светового излучения, падающего на поверхность тела. Iнас ˜ световому потоку! Внимание! Световой поток, падающий на фотокатод, увеличивается, а его спектральный состав остается неизменным: Ф2 > Ф1
Второй закон фотоэффекта Если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, а, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Максимальная скорость фотоэлектронов зависит только от частоты падающего света и не зависит от его интенсивности. Важно! По модулю запирающего напряжения можно судить о скорости фотоэлектронов и об их кинетической энергии!
Третий закон фотоэффекта Для каждого вещества существует минимальная частота (так называемая красная граница фотоэффекта), ниже которой фотоэффект невозможен.
Красная граница фотоэффекта При < min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет!
Применение фотоэффекта На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы - приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.
Вакуумный фотоэлемент Простейшим фотоэлементом с внешним фотоэффектом является вакуумный фотоэлемент. Он представляет собой откачанный стеклянный баллон, внутренняя поверхность которого (за исключением окошка для доступа излучения) покрыта фоточувствительным слоем, служащим фотокатодом. В качестве анода обычно используется кольцо или сетка, помещаемая в центре баллона.
Вакуумные фотоэлементы безынерционны, и для них наблюдается строгая пропорциональность фототока интенсивности излучения. Эти свойства позволяют использовать вакуумные фотоэлементы в качестве фотометрических приборов, например фотоэлектрический экспонометр, люксметр (измеритель освещенности) и т.д.
Фоторезисторы Фотоэлементы с внутренним фотоэффектом, называемые полупроводниковыми фотоэлементами или фотосопротивлениями (фоторезисторами), обладают гораздо большей интегральной чувствительностью, чем вакуумные. Недостаток фотосопротивлений – их заметная инерционность, поэтому они непригодны для регистрации быстропеременных световых потоков.
Вентильные фотоэлементы Фотоэлементы с вентильным фотоэффектом, называемые вентильными фотоэлементами (фотоэлементы с запирающим слоем), обладая, подобно элементам с внешним фотоэффектом, строгой пропорциональностью фототока интенсивности излучения, имеют большую по сравнению с ними интегральную чувствительность и не нуждаются во внешнем источнике э.д.с. Кремниевые и другие вентильные фотоэлементы применяются для создания солнечных батарей, непосредственно преобразующих световую энергию в электрическую.
Такие батареи уже в течение многих лет работают на космичес- ких спутниках и кораблях. Их КПД приблизительно 10% и, как показывают теоретические расчеты, может быть доведён до 22%, что открывает широкие перспективы их использования в качестве источников для бытовых и производственных нужд.
Солнцемобиль, солнечная станция
Проверочные тесты
№1: Какому из нижеприведенных выражений соответствует единица измерения постоянной Планка в СИ? а) Дж с б) кг м/c2 в) кг м/c г) Н м д) кг/м3
№2: По какой из нижеприведенных формул, можно рассчитать импульс фотона? ( Е-энергия фотона; с- скорость света) А) Ес B) Ес2 C) с/Е D) с2/Е E) Е/с
№3 Как изменится работа выхода, при увеличении длины волны падающего излучения на катод, в четыре раза? А) Увеличится в четыре раза. B) Уменьшится в четыре раза. C) Увеличится в два раза. D) Уменьшится в два раза. E) Не изменится.
№4 Какое из нижеприведенных утверждений ( для данного электрода) справедливо? А) Работа выхода зависит от длины волны падающего излучения. B) «Запирающее» напряжение зависит от работы выхода. C) Увеличение длины волны падающего излучения приводит к увеличению скорости вылетающих фотоэлектронов. D) Максимальная скорость вылетающих фотоэлектронов, зависит только от работы выхода. E) Увеличение частоты падающего излучения, приводит к увеличению скорости фотоэлектронов.
№5.Пластина изготовлена из материала, «красная граница» для которого попадает в голубую область спектра. При освещении какими лучами данной пластины наблюдается фотоэффект? А) Инфракрасными. B) Ультрафиолетовыми. C) Желтыми. D) Красными. E) Оранжевыми.
№6: Как изменится работа выхода, при увеличении длины волны падающего излучения на катод, в четыре раза? А) Увеличится в четыре раза. B) Уменьшится в четыре раза. C) Увеличится в два раза. D) Уменьшится в два раза. E) Не изменится.
№7 Какое из нижеприведенных утверждений справедливо? Кинетическая энергия вылетающих фотоэлектронов зависит от: А) Только от частоты падающего излучения. B) Только от температуры металла. C) Только от интенсивности излучения. D) От частоты и интенсивности падающего Излучения. E) От температуры металла и интенсивности излучения.