Экспериментальные методы регистрации ионизирующих излучений 11 класс Подготовили: Гаськова М. Яремич В. учитель Антикуз Е.В.
Экспериментальные методы ионизирующих излучений Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим некоторые из них, которые наиболее широко используются.
Камера Вильсона Рабочий объем камеры заполнен газом, который содержит насыщенный пар. При быстром перемещении поршня вниз газ в объеме адиабатически расширяется и охлаждается, при этом становясь перенасыщенным. Когда в этом пространстве пролетает частица, создающая на своем пути ионы, то на этих ионах образуются капельки сконденсировавшегося пара. В камере возникает след траектории частицы (трек) в виде полоски тумана.
Треки частиц (рис.1), протонов (рис.2) в камере Вильсона
Камера Вильсона
Принцип работы камеры Вильсона
Пузырьковая камера
Пузырьковая камера Пузырьковая камера Пузырьковая камера обычно заполняется пропаном, но могут применяться и другие заполнители: водород, азот, эфир, ксенон, фреон и т.д. Рабочая жидкость находится в перегретом состоянии, и заряженная частица, двигаясь в ней, создает центры парообразования. Пузырьки пара образуют видимый след движения частицы в жидкости. Пузырьковые камеры широко применяются для работы на ускорителях.
Счетчик Гейгера-Мюллера
Счетчик Гейгера Первый основной прибор для регистрации частиц был изобретён в 1908 году Г.Гейгером и им же усовершенствован совместно с И.Мюллером. Счетчик Гейгера-Мюллера - газовый счетчик, применяемый для обнаружения и исследования радиоактивных и других ионизирующих излучений. Счетчик Гейгера-Мюллера представляет собой газоразрядный промежуток с сильно неоднородным электрическим полем. Для регистрации ионизирующих частиц к электродам счетчика прикладывается высокое напряжение. Заряженная частица, попав в рабочий объем, ионизирует газ, и в счетчике возникает коронный разряд. Прибор основан на ударной ионизации. Широко используют в ядерной технике, а так же при поиске слабо радиоактивных урановых и ториевых руд.
Счетчик Гейгера
Сцинтилляционный метод
Сцинтилляционный метод Сцинтилляционный счетчик состоит из сцинтиллятора, фотоэлектронного умножителя и электронных устройств для усиления и подсчета импульсов. Сцинтиллятор преобразует энергию ионизирующего излучения в кванты видимого света, величина которых зависит от типа частиц и материала сцинтиллятора. Кванты видимого света, попав на фотокатод, выбивают из него электроны, число которых многократно увеличивается фотоумножителем. В результате этого на выходе фотоумножителя образуется значительный импульс, который затем усиливается и сосчитывается пересчетной установкой. Таким образом, за счет энергии a-или b-частицы, g-кванта или другой ядерной частицы в сцинтилляторе появляется световая вспышка-сцинтилляция, которая затем с помощью фотоэлектронного умножителя (ФЭУ) преобразуется в импульс тока и регистрируется.
Сцинтилляционный метод
Способы обнаружения альфа, бета-излучения Схема опыта по обнаружению a-, b- и g-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка, B – магнитное поле.