ПОЛЕВЫЕ МЕТОДЫ ГЕОЛОГИЧЕСКОГО И ГЕОФИЗИЧЕСКОГО ИЗУЧЕНИЯ ГОРНЫХ ПОРОД И ИХ ВЗАИМООТНОШЕНИЙ 1. Геологическая съемка и картирование территории; опробование горных пород 2. Документация карьеров и подземных выработок, геолого-разведочных скважин; горно-буровые работы; 3. Геофизические методы исследований - это сейсморазведка и различного вида каротажи (электро-, гамма-каротаж, нейтронный, акустический), кавернометрия, термометрия
1 – растительный покров; 2 – почвеный слой; 3 – глинисто-песчаный слой; 4 – глины; 5 – глинисто-песчаный слой; 6 – косослоистые пески с прослоями глины; 7 – мергель; 8 – алевролит; 9 – известняк доломитизированный; 10 - косослоистые пески с прослоями глины; 11 – песчанистый доломит; 12 –кристаллический фундамент Геологическая съемка и картирование территории; опробование горных пород
Геологическая съемка и картирование территории
Геофизические методы исследований - это сейсморазведка и различного вида каротажи (электро-, гамма- каротаж, нейтронный, акустический), кавернометрия,термометрия Пример сейсмограммы четвертичных отложений. Финский залив 1. Морские голоценовые отложения 2. Ледниково-озерные верхнеплейстоценовые отложения 3. Ледниковые отложения (морена)
Геосейсмическая модель Печенгской структуры (Кольский полуостров)
Геологическая съемка и картирование территории; опробование горных пород бурением
Мечта проникнуть к сердцу нашей планеты и познать скрытую жизнь ее недр по-прежнему остается недостижимой. Ближе всех к этой цели подошли наши соотечественники, пробурившие Кольскую сверхглубокую скважину (проектная глубина - 15 километров). Начало работ в мае 1970 года. Использовалась техника: установка «Уралмаш 4Э» грузоподъёмностью 200 тонн и легкосплавные трубы
Через 5 лет, когда глубина скважины СГ-3 превысила 7 километров, смонтировали новую буровую установку «Уралмаш 15 000» – одну из самых современных по тем временам В июне 1990 года СГ-3 достигла глубины 12 262 м. В 1994 году бурение Кольской сверхглубокой прекратили. Через 3 года она попала в Книгу рекордов Гиннесса и до сих пор остается непревзойдённой. Сейчас скважина представляет собой лабораторию для изучения глубоких недр.
1. Аралсорская СГ-1, Прикаспийская низменность, 1962-1971, глубина – 6,8 км. Поиск нефти и газа. 2. Биикжальская СГ-2, Прикаспийская низменность, 1962-1971, глубина – 6,2 км. Поиск нефти и газа. 3. Кольская СГ-3, 1970-1994, глубина – 12 262 м. Проектная глубина – 15 км. 4. Саатлинская, Азербайджан, 1977-1990, глубина – 8 324 м. Проектная глубина – 11 км. 5. Колвинская, Архангельская область, 1961, глубина – 7 057 м. 6. Мурунтауская СГ-10, Узбекистан, 1984, глубина – 3 км. Проектная глубина – 7 км. Поиск золота. 7. Тимано-Печорская СГ-5, Северо-Восток России, 1984-1993, глубина – 6 904 м, проектная глубина – 7 км. 8. Тюменская СГ-6, Западная Сибирь, 1987-1996, глубина -7 502 м. Проектная глубина – 8 км. Поиск нефти и газа. 9. Ново-Елховская, Татарстан, 1988, глубина – 5 881 м. 10. Воротиловская скважина, Поволжье, 1989-1992, глубина – 5 374 м. Поиск алмазов, изучение Пучеж-Катункской астроблемы. 11. Криворожская СГ-8, Украина, 1984-1993, глубина – 5 382 м. Проектная глубина – 12 км. Поиск железистых кварцитов. 12. Уральская СГ-4, Средний Урал. Заложена в 1985 году. Проектная глубина – 15 000 м. Текущая глубина – 6 100 м. Поиск медных руд, изучение строения Урала. 13. Ен-Яхтинская СГ-7, Западная Сибирь. Проектная глубина – 7 500 м. Текущая глубина – 6 900 м. Поиск нефти и газа. Скважины на нефть и газ: Начала 70-х годов - Юниверсити, США, глубина – 8 686 м. Бейден-Юнит, США, глубина – 9 159 м. Берта-Роджерс, США, глубина – 9 583 м. 80-х годов - Цистердорф, Австрия, глубина 8 553 м. Сильян Ринг, Швеция, глубина – 6,8 км. Бигхорн, США, Вайоминг, глубина – 7 583 м. КТВ Hauptbohrung, Германия, 1990-1994, глубина – 9 100 м. Проектная глубина – 10 км. Научное бурение. Самые глубокие скважины мира:
Разрез Кольской скважины опроверг существовавшую до этого времени двухслойную модель земной коры и показал, что сейсмические разделы в недрах – это не границы между толщами пород разного состава, а скорее всего они указывают на изменение свойств камня с глубиной. Так, при высоком давлении и температуре граниты по своим физическим характеристикам становятся похожи на базальты, и наоборот. Первые 7 километров были сложены вулканическими и осадочными породами: туфами, базальтами, брекчиями, песчаниками, доломитами. Глубже лежал так называемый раздел Конрада, после которого скорость сейсмических волн в породах резко увеличивалась, что интерпретировалось как граница между гранитами и базальтами. Однако базальты нижнего слоя земной коры так нигде и не появились: породы оказались представлены гранитами и гнейсами. Кроме того, раньше считалось, что с удалением от поверхности земли, с ростом давления, породы становятся более монолитными, с малым количеством трещин и пор. СГ-3 убедила учёных в обратном. Начиная с 9 километров, толщи оказались очень пористыми и трещиноватыми, по ним циркулировали водные растворы. Позднее этот факт подтвердили другие сверхглубокие скважины на континентах. На глубине оказалось гораздо жарче, чем рассчитывали: на целых 80°! На отметке 7 км температура в забое была 120°С, на 12 км – достигла уже 230°С. ПОЛУЧЕННЫЕ ПРИ БУРЕНИИ НАУЧНЫЕ ДАННЫЕ Одно из самых удивительных открытий, которое учёные сделали с помощью бурения, – это наличие жизни глубоко под землей. И, хотя жизнь эта представлена лишь бактериями, её пределы простираются до невероятных глубин
Глубинное строение Земли недоступно для непосредственных исследований и может быть изучено только геофизическими методами: сейсмологией, глубинной сейсморазведкой, гравиметрией, магнитометрией, глубинной геоэлектрикой, термометрией, радиометрией. Интерпретируя материалы глубинной геофизики, удалось расчленить Землю на сферические оболочки, определить скачки физических свойств на их границах и изменения свойств по латерали, построить физические модели недр Земли, а по ним судить о химическом составе.
ЛАБОРАТОРНЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ МИНЕРАЛОВ Оптический микроскоп
Цифровое фото шлифов образца (тонкие спилы, приклеенные на стекло)
Цифровое фото шлифов
Сканирующий электронный микроскоп JSM – 6390LF Исследуемый образец
Микрофотографии сколов марганцево-рудных обособлений Проблематичные ископаемые микроорганизмы Оруденелые агрегаты ископаемых марганцевых бактерий
Электронно-зондовый микроанализ химического состава Высокоточный количественный, полукачественный и оперативный качественный анализ элементов от Na до U
Рентгенофлуоресцентный анализ элементного состава
Характерное свечение различных элементов
Масс-спектрометрический анализ элементов и их изотопного состава Высокоточное определение следовых содержаний элементов в жидких и твердофазных пробах
Подготовка проб
Метод газовой хроматографии
Спектральный и химический анализ
Различные спектры объектов изучения
Рентгеноструктурный анализ пород и минералов
Рентгенограмма и расшифровка минерального состава исследуемого образца d, Å Минерал d, Å Минерал 9,843 2,515 Гематит 9,470 Литиофорит 2,395 Вернандит 7,530 2,277 Кварц 6,944 Вернандит 2,240 Кварц 5,734 2,205 Гематит 4,96 Вернандит 2,148 Вернандит 4,735 Литиофорит 2,129 Кварц 4,448 2,068 4,252 Кварц 1,981 Кварц 3,687 Гематит 1,838 Гематит 3,571 1,820 Вернандит 3,342 Кварц 1,696 Гематит 3,133 Вернандит 1,653 Вернандит 2,694 Гематит 1,598 Гематит
Термический анализ пород, руд и минералов
Дериватограмма исследуемого образца (колония ископаемого коралла)
Инфракрасная спектроскопия Радиоспектроскопия Анализ физических свойств и точечных дефектов структур минералов
ИК-спектры каменноугольной смолы углей ИК-спектр бензина АИ-76 ИК-спектры образцов гидроксилапатита кальция
Катодно-люминесцентный анализ Низкие пределы обнаружения примесных ионов, редкоземельных элементов и дефектов структур